International Mathematics Competition
for University Students
2016

Select Year:


IMC 2019
Information
  Results/Prizes
  Problems & Solutions
  Photos
 

IMC2016: Day 2, Problem 10

10. Let $A$ be a $n\times n$ complex matrix whose eigenvalues have absolute value at most $1$. Prove that $$ \|A^n\|\le \dfrac{n}{\ln 2} \|A\|^{n-1}. $$ (Here $\|B\|=\sup\limits_{\|x\|\leq 1} \|Bx\|$ for every $n\times n$ matrix $B$ and $\|x\|=\sqrt{\sum\limits_{i=1}^n |x_i|^2}$ for every complex vector $x\in\mathbb{C}^n$.)

Proposed by Ian Morris and Fedor Petrov, St. Petersburg State University

        

 

IMC
2016

© IMC