# IMC 2023 

## First Day, August 2, 2023

Problem 1. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that have a continuous second derivative and for which the equality $f(7 x+1)=49 f(x)$ holds for all $x \in \mathbb{R}$.
(10 points)

Problem 2. Let $A, B$ and $C$ be $n \times n$ matrices with complex entries satisfying

$$
A^{2}=B^{2}=C^{2} \quad \text { and } \quad B^{3}=A B C+2 I
$$

Prove that $A^{6}=I$.

Problem 3. Find all polynomials $P$ in two variables with real coefficients satisfying the identity

$$
P(x, y) P(z, t)=P(x z-y t, x t+y z) .
$$

(10 points)

Problem 4. Let $p$ be a prime number and let $k$ be a positive integer. Suppose that the numbers $a_{i}=i^{k}+i$ for $i=0,1, \ldots, p-1$ form a complete residue system modulo $p$. What is the set of possible remainders of $a_{2}$ upon division by $p$ ?
(10 points)

Problem 5. Fix positive integers $n$ and $k$ such that $2 \leq k \leq n$ and a set $M$ consisting of $n$ fruits. A permutation is a sequence $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $\left\{x_{1}, \ldots, x_{n}\right\}=M$. Ivan prefers some (at least one) of these permutations. He realized that for every preferred permutation $x$, there exist $k$ indices $i_{1}<i_{2}<\ldots<i_{k}$ with the following property: for every $1 \leq j<k$, if he swaps $x_{i_{j}}$ and $x_{i_{j+1}}$, he obtains another preferred permutation.

Prove that he prefers at least $k$ ! permutations.

