First Day, August 2, 2023

Solutions

Problem 1. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that have a continuous second derivative and for which the equality $f(7 x+1)=49 f(x)$ holds for all $x \in \mathbb{R}$.

> (proposed by Alex Avdiushenko, Neapolis University Paphos, Cyprus)

Hint:

- The fixed point of $7 x+1$ is $-1 / 6$.
- Differentiating twice cancels out the coefficient 49.

Solution. Differentiating the equation twice, we get

$$
\begin{equation*}
f^{\prime \prime}(7 x+1)=f^{\prime \prime}(x) \quad \text { or } \quad f^{\prime \prime}(x)=f^{\prime \prime}\left(\frac{x-1}{7}\right) . \tag{1}
\end{equation*}
$$

Take an arbitrary $x \in \mathbb{R}$, and construct a sequence by the recurrence

$$
x_{0}=x, \quad x_{k+1}=\frac{x_{k}-1}{7} .
$$

By (1), the values of $f^{\prime \prime}$ at all points of this sequence are equal. The limit of this sequence is $-\frac{1}{6}$, since $\left|x_{k+1}+\frac{1}{6}\right|=\frac{1}{7}\left|x_{k}+\frac{1}{6}\right|$.

Due to the continuity of $f^{\prime \prime}$, the values of $f^{\prime \prime}$ at all points of this sequence are equal to $f^{\prime \prime}\left(-\frac{1}{6}\right)$, which means that $f^{\prime \prime}(x)$ is a constant.

Then f is an at most quadratic polynomial, $f(x)=a x^{2}+b x+c$. Substituting this expression into the original equation, we get a system of equations, from which we find $a=36 c, b=12 c$, and hence

$$
f(x)=c(6 x+1)^{2}
$$

Problem 2. Let A, B and C be $n \times n$ matrices with complex entries satisfying

$$
A^{2}=B^{2}=C^{2} \quad \text { and } \quad B^{3}=A B C+2 I
$$

Prove that $A^{6}=I$.
(proposed by Mike Daas, Universiteit Leiden)
Hint: Factorize $B^{3}-A B C$.
Solution. Note that $B^{3}=A^{2} B$, from which it follows that

$$
A^{2} B-A B C=2 I \Longrightarrow A(A B-B C)=2 I .
$$

Similarly, using that $B^{3}=B C^{2}$, we find that

$$
B C^{2}-A B C=2 I \Longrightarrow(B C-A B) C=2 I .
$$

It follows that A is a left-inverse of $(A B-B C) / 2$, whereas $-C$ is a right inverse. Hence $A=-C$ and as such, it must hold that $A B A=2 I-B^{3}$. It follows that $A B A$ must commute with B, and so it follows that $(A B)^{2}=(B A)^{2}$. Now we compute that

$$
(A B-B A)(A B+B A)=(A B)^{2}+A B^{2} A-B A^{2} B-(B A)^{2}=(A B)^{2}+A^{4}-B^{4}-(A B)^{2}=0
$$

However, we noted before that the matrix $A B-B C=A B+B A$ must be invertible. As such, it must follow that $A B=B A$. We conclude that $A B A=A^{2} B=B^{3}$ and so it readily follows that $B^{3}=I$. Finally, $A^{6}=B^{6}=\left(B^{3}\right)^{2}=I^{2}=I$, completing the proof.

Problem 3. Find all polynomials P in two variables with real coefficients satisfying the identity

$$
P(x, y) P(z, t)=P(x z-y t, x t+y z) .
$$

(proposed by Giorgi Arabidze, Free University of Tbilisi, Georgia)
Hint: The polynomials $(x+i y)^{n}$ and $(x-i y)^{m}$ are trivial complex solutions. Suppose that $P(x, y)=$ $(x+i y)^{n}(x-i y)^{m} Q(x, y)$, where $Q(x, y)$ is divisible neither by $x+i y$ nor $x=i y$ and consider $Q(x, y)$.

Solution. First we find all polynomials $P(x, y)$ with complex coefficients which satisfies the condition of the problem statement. The identically zero polynomial clearly satisfies the condition. Let consider other polynomials.

Let $i^{2}=-1$ and $P(x, y)=(x+i y)^{n}(x-i y)^{m} Q(x, y)$, where n and m are non-negative integers and $Q(x, y)$ is a polynomial with complex coefficients such that it is not divisible neither by $x+i y$ nor by $x-i y$. By the problem statement we have $Q(x, y) Q(z, t)=Q(x z-y t, x t+y z)$. Note that $z=t=0$ gives $Q(x, y) Q(0,0)=Q(0,0)$. If $Q(0,0) \neq 0$, then $Q(x, y)=1$ for all x and y. Thus $P(x, y)=(x+i y)^{n}(x-i y)^{m}$. Now consider the case when $Q(0,0)=0$.

Let $x=i y$ and $z=-i t$. We have $Q(i y, y) Q(-i t, t)=Q(0,0)=0$ for all y and t. Since $Q(x, y)$ is not divisible by $x-i y, Q(i y, y)$ is not identically zero and since $Q(x, y)$ is not divisible by $x+i y$, $Q(-i t, t)$ is not identically zero. Thus there exist y and t such that $Q(i y, y) \neq 0$ and $Q(-i t, t) \neq 0$ which is impossible because $Q(i y, y) Q(-i t, t)=0$ for all y and t.

Finally, $P(x, y)$ polynomials with complex coefficients which satisfies the condition of the problem statement are $P(x, y)=0$ and $P(x, y)=(x+i y)^{n}(x-i y)^{m}$. It is clear that if $n \neq m$, then $P(x, y)=(x+i y)^{n}(x-i y)^{m}$ cannot be polynomial with real coefficients. So we need to require $n=m$, and for this case $P(x, y)=(x+i y)^{n}(x-i y)^{n}=\left(x^{2}+y^{2}\right)^{n}$.

So, the answer of the problem is $P(x, y)=0$ and $P(x, y)=\left(x^{2}+y^{2}\right)^{n}$ where n is any non-negative integer.

Problem 4. Let p be a prime number and let k be a positive integer. Suppose that the numbers $a_{i}=i^{k}+i$ for $i=0,1, \ldots, p-1$ form a complete residue system modulo p. What is the set of possible remainders of a_{2} upon division by p ?
(proposed by Tigran Hakobyan, Yerevan State University, Armenia)
Hint: Consider $\prod_{i=0}^{p-1}\left(i^{k}+i\right)$.
Solution. First observe that $p=2$ does not satisfy the condtion, so p must be an odd prime.
Lemma. If $p>2$ is a prime and \mathbb{F}_{p} is the field containing p elements, then for any integer $1 \leq n<p$ one has the following equality in the field \mathbb{F}_{p}

$$
\prod_{\alpha \in \mathbb{F}_{p}^{*}}\left(1+\alpha^{n}\right)= \begin{cases}0, & \text { if } \frac{p-1}{\operatorname{gcd}(p-1, n)} \text { is even } \\ 2^{n}, & \text { otherwise }\end{cases}
$$

Proof. We may safely assume that $n \mid p-1$ since it can be easily proved that the set of n-th powers of the elements of \mathbb{F}_{p}^{*} coincides with the set of $\operatorname{gcd}(p-1, n)$-th powers of the same elements. Assume that $t_{1}, t_{2}, \ldots, t_{n}$ are the roots of the polynomial $t^{n}+1 \in \mathbb{F}_{p}[x]$ in some extension of the field \mathbb{F}_{p}. It follows that

$$
\prod_{\alpha \in \mathbb{F}_{p}^{*}}\left(1+\alpha^{n}\right)=\prod_{\alpha \in \mathbb{F}_{p}^{*}} \prod_{i=1}^{n}\left(\alpha-t_{i}\right)=\prod_{i=1}^{n} \prod_{\alpha \in \mathbb{F}_{p}^{*}}\left(\alpha-t_{i}\right)=\prod_{i=1}^{n} \prod_{\alpha \in \mathbb{F}_{p}^{*}}\left(t_{i}-\alpha\right)=\prod_{i=1}^{n} \Phi\left(t_{i}\right)
$$

where we define $\Phi(t)=\prod_{\alpha \in \mathbb{F}_{p}^{*}}(t-\alpha)=t^{p-1}-1$. Therefore

$$
\prod_{\alpha \in \mathbb{F}_{p}^{*}}\left(1+\alpha^{n}\right)=\prod_{i=1}^{n}\left(t_{i}^{p-1}-1\right)=\prod_{i=1}^{n}\left(\left(t_{i}^{n}\right)^{\frac{p-1}{n}}-1\right)=\prod_{i=1}^{n}\left((-1)^{\frac{p-1}{n}}-1\right)= \begin{cases}0, & \text { if } \frac{p-1}{n} \text { is even } \\ 2^{n}, & \text { otherwise }\end{cases}
$$

Let us now get back to our problem. Suppose the numbers $i^{k}+i, 0 \leq i \leq p-1$ form a complete residue system modulo p. It follows that

$$
\prod_{\alpha \in \mathbb{F}_{p}^{*}}\left(\alpha^{k}+\alpha\right)=\prod_{\alpha \in \mathbb{F}_{p}^{*}} \alpha
$$

so that $\prod_{\alpha \in \mathbb{F}_{p}^{*}}\left(\alpha^{k-1}+1\right)=1$ in \mathbb{F}_{p}. According to the Lemma, this means that $2^{k-1}=1$ in \mathbb{F}_{p}, or equivalently, that $2^{k-1} \equiv 1(\bmod p)$. Therefore $a_{2}=2^{k}+2 \equiv 4(\bmod p)$ so that the remainder of a_{2} upon division by p is either 4 when $p>3$ or is 1 , when $p=3$.

Problem 5. Fix positive integers n and k such that $2 \leq k \leq n$ and a set M consisting of n fruits. A permutation is a sequence $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $\left\{x_{1}, \ldots, x_{n}\right\}=M$. Ivan prefers some (at least one) of these permutations. He realized that for every preferred permutation x, there exist k indices $i_{1}<i_{2}<\ldots<i_{k}$ with the following property: for every $1 \leq j<k$, if he swaps $x_{i_{j}}$ and $x_{i_{j+1}}$, he obtains another preferred permutation.

Prove that he prefers at least k ! permutations.

(proposed by Ivan Mitrofanov, École Normale Superieur Paris)

Hint: For every permutation z of M, choose a preferred permutation x such that $\sum_{m \in M} x^{-1}(m) z^{-1}(m)$ is maximal.

Solution. Let S be the set of all $n!$ permutations of M, and let P be the set of preferred permutations. For every permutation $x \in S$ and $m \in M$, let $x^{-1}(m)$ denote the unique number $i \in\{1,2, \ldots, n\}$ with $x_{i}=m$.

For every $x \in P$, define

$$
A(x)=\left\{z \in S: \forall y \in P \quad \sum_{m \in M} x^{-1}(m) z^{-1}(m) \geq \sum_{m \in M} y^{-1}(m) z^{-1}(m)\right\} .
$$

For every permutation $z \in S$, we can choose a permutation $x \in P$ for which $\sum_{m \in M} x^{-1}(m) z^{-1}(m)$ is maximal, and then we have $z \in A(x)$; hence, all $z \in S$ is contained in at least one set $A(x)$.

So, it suffices to prove that $|A(x)| \leq \frac{n!}{k!}$ for every preferred permutation x. Fix $x \in P$, and consider an arbitrary $z \in A(x)$. Let the indices $i_{1}<\ldots<i_{k}$ be as in the statement of the problem, and let $m_{j}=x_{i_{j}}$ for $j=1,2, \ldots, k$.

For $s=1,2, \ldots, k-1$ consider the permutation y obtained from x by swapping m_{s} and m_{s+1}. Since $y \in P$, the definition of $A(x)$ provides

$$
\begin{aligned}
i_{s} z^{-1}\left(m_{s}\right)+i_{s+1} z^{-1}\left(m_{s+1}\right) & \geq i_{s+1} z^{-1}\left(m_{s}\right)+i_{s} z^{-1}\left(m_{s+1}\right), \\
z^{-1}\left(m_{s+1}\right) & \geq z^{-1}\left(m_{s}\right) .
\end{aligned}
$$

Therefore, the elements $m_{1}, m_{2}, \ldots, m_{k}$ appear in z in this order. There are exactly $n!/ k$! permutations with this property, so $|A(x)| \leq \frac{n!}{k!}$.

