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First Day, August 2, 2023

Solutions

Problem 1. Find all functions f : R → R that have a continuous second derivative and for which
the equality f(7x+ 1) = 49f(x) holds for all x ∈ R.

(proposed by Alex Avdiushenko, Neapolis University Paphos, Cyprus)

Hint:

• The fixed point of 7x+ 1 is −1/6.

• Differentiating twice cancels out the coefficient 49.

Solution. Differentiating the equation twice, we get

f ′′(7x+ 1) = f ′′(x) or f ′′(x) = f ′′
(
x− 1

7

)
. (1)

Take an arbitrary x ∈ R, and construct a sequence by the recurrence

x0 = x, xk+1 =
xk − 1

7
.

By (1), the values of f ′′ at all points of this sequence are equal. The limit of this sequence is −1
6
,

since
∣∣xk+1 +

1
6

∣∣ = 1
7

∣∣xk +
1
6

∣∣.
Due to the continuity of f ′′, the values of f ′′ at all points of this sequence are equal to f ′′ (−1

6

)
,

which means that f ′′(x) is a constant.
Then f is an at most quadratic polynomial, f(x) = ax2 + bx + c. Substituting this expression

into the original equation, we get a system of equations, from which we find a = 36c, b = 12c, and
hence

f(x) = c(6x+ 1)2.
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Problem 2. Let A, B and C be n× n matrices with complex entries satisfying

A2 = B2 = C2 and B3 = ABC + 2I.

Prove that A6 = I.

(proposed by Mike Daas, Universiteit Leiden)

Hint: Factorize B3 − ABC.

Solution. Note that B3 = A2B, from which it follows that

A2B − ABC = 2I =⇒ A(AB −BC) = 2I.

Similarly, using that B3 = BC2, we find that

BC2 − ABC = 2I =⇒ (BC − AB)C = 2I.

It follows that A is a left-inverse of (AB − BC)/2, whereas −C is a right inverse. Hence A = −C
and as such, it must hold that ABA = 2I −B3. It follows that ABA must commute with B, and so
it follows that (AB)2 = (BA)2. Now we compute that

(AB −BA)(AB +BA) = (AB)2 + AB2A−BA2B − (BA)2 = (AB)2 + A4 −B4 − (AB)2 = 0.

However, we noted before that the matrix AB − BC = AB + BA must be invertible. As such, it
must follow that AB = BA. We conclude that ABA = A2B = B3 and so it readily follows that
B3 = I. Finally, A6 = B6 = (B3)2 = I2 = I, completing the proof.
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Problem 3. Find all polynomials P in two variables with real coefficients satisfying the identity

P (x, y)P (z, t) = P (xz − yt, xt+ yz).

(proposed by Giorgi Arabidze, Free University of Tbilisi, Georgia)

Hint: The polynomials (x+iy)n and (x−iy)m are trivial complex solutions. Suppose that P (x, y) =
(x+ iy)n(x− iy)mQ(x, y), where Q(x, y) is divisible neither by x+ iy nor x = iy and consider Q(x, y).

Solution. First we find all polynomials P (x, y) with complex coefficients which satisfies the condition
of the problem statement. The identically zero polynomial clearly satisfies the condition. Let consider
other polynomials.

Let i2 = −1 and P (x, y) = (x + iy)n(x − iy)mQ(x, y), where n and m are non-negative integers
and Q(x, y) is a polynomial with complex coefficients such that it is not divisible neither by x + iy
nor by x − iy. By the problem statement we have Q(x, y)Q(z, t) = Q(xz − yt, xt + yz). Note that
z = t = 0 gives Q(x, y)Q(0, 0) = Q(0, 0). If Q(0, 0) ̸= 0, then Q(x, y) = 1 for all x and y. Thus
P (x, y) = (x+ iy)n(x− iy)m. Now consider the case when Q(0, 0) = 0.

Let x = iy and z = −it. We have Q(iy, y)Q(−it, t) = Q(0, 0) = 0 for all y and t. Since Q(x, y)
is not divisible by x− iy, Q(iy, y) is not identically zero and since Q(x, y) is not divisible by x+ iy,
Q(−it, t) is not identically zero. Thus there exist y and t such that Q(iy, y) ̸= 0 and Q(−it, t) ̸= 0
which is impossible because Q(iy, y)Q(−it, t) = 0 for all y and t.

Finally, P (x, y) polynomials with complex coefficients which satisfies the condition of the problem
statement are P (x, y) = 0 and P (x, y) = (x + iy)n(x − iy)m. It is clear that if n ̸= m, then
P (x, y) = (x + iy)n(x − iy)m cannot be polynomial with real coefficients. So we need to require
n = m, and for this case P (x, y) = (x+ iy)n(x− iy)n = (x2 + y2)n.

So, the answer of the problem is P (x, y) = 0 and P (x, y) = (x2+y2)n where n is any non-negative
integer.
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Problem 4. Let p be a prime number and let k be a positive integer. Suppose that the numbers
ai = ik+ i for i = 0, 1, . . . , p−1 form a complete residue system modulo p. What is the set of possible
remainders of a2 upon division by p?

(proposed by Tigran Hakobyan, Yerevan State University, Armenia)

Hint: Consider

p−1∏
i=0

(ik + i).

Solution. First observe that p = 2 does not satisfy the condtion, so p must be an odd prime.

Lemma. If p > 2 is a prime and Fp is the field containing p elements, then for any integer 1 ≤ n < p
one has the following equality in the field Fp

∏
α∈F∗

p

(1 + αn) =

0, if
p− 1

gcd(p− 1, n)
is even

2n, otherwise

Proof. We may safely assume that n|p − 1 since it can be easily proved that the set of n-th powers
of the elements of F∗

p coincides with the set of gcd(p− 1, n)-th powers of the same elements. Assume
that t1, t2, ..., tn are the roots of the polynomial tn + 1 ∈ Fp[x] in some extension of the field Fp. It
follows that∏

α∈F∗
p

(1 + αn) =
∏
α∈F∗

p

n∏
i=1

(α− ti) =
n∏

i=1

∏
α∈F∗

p

(α− ti) =
n∏

i=1

∏
α∈F∗

p

(ti − α) =
n∏

i=1

Φ(ti),

where we define Φ(t) =
∏

α∈F∗
p
(t− α) = tp−1 − 1. Therefore

∏
α∈F∗

p

(1 + αn) =
n∏

i=1

(tp−1
i − 1) =

n∏
i=1

((tni )
p−1
n − 1) =

n∏
i=1

((−1)
p−1
n − 1) =

{
0, if p−1

n
is even

2n, otherwise

Let us now get back to our problem. Suppose the numbers ik + i, 0 ≤ i ≤ p− 1 form a complete
residue system modulo p. It follows that∏

α∈F∗
p

(αk + α) =
∏
α∈F∗

p

α

so that
∏

α∈F∗
p
(αk−1 + 1) = 1 in Fp. According to the Lemma, this means that 2k−1 = 1 in Fp, or

equivalently, that 2k−1 ≡ 1(mod p). Therefore a2 = 2k + 2 ≡ 4(mod p) so that the remainder of a2
upon division by p is either 4 when p > 3 or is 1, when p = 3.
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Problem 5. Fix positive integers n and k such that 2 ≤ k ≤ n and a set M consisting of n fruits.
A permutation is a sequence x = (x1, x2, . . . , xn) such that {x1, . . . , xn} = M . Ivan prefers some (at
least one) of these permutations. He realized that for every preferred permutation x, there exist k
indices i1 < i2 < . . . < ik with the following property: for every 1 ≤ j < k, if he swaps xij and xij+1

,
he obtains another preferred permutation.

Prove that he prefers at least k! permutations.

(proposed by Ivan Mitrofanov, École Normale Superieur Paris)

Hint: For every permutation z ofM , choose a preferred permutation x such that
∑

m∈M
x−1(m)z−1(m)

is maximal.

Solution. Let S be the set of all n! permutations ofM , and let P be the set of preferred permutations.
For every permutation x ∈ S and m ∈ M , let x−1(m) denote the unique number i ∈ {1, 2, . . . , n}
with xi = m.

For every x ∈ P , define

A(x) =

{
z ∈ S : ∀y ∈ P

∑
m∈M

x−1(m)z−1(m) ≥
∑
m∈M

y−1(m)z−1(m)

}
.

For every permutation z ∈ S, we can choose a permutation x ∈ P for which
∑

m∈M
x−1(m)z−1(m) is

maximal, and then we have z ∈ A(x); hence, all z ∈ S is contained in at least one set A(x).

So, it suffices to prove that
∣∣A(x)∣∣ ≤ n!

k!
for every preferred permutation x. Fix x ∈ P , and

consider an arbitrary z ∈ A(x). Let the indices i1 < . . . < ik be as in the statement of the problem,
and let mj = xij for j = 1, 2, . . . , k.

For s = 1, 2, . . . , k − 1 consider the permutation y obtained from x by swapping ms and ms+1.
Since y ∈ P , the definition of A(x) provides

isz
−1(ms) + is+1z

−1(ms+1) ≥ is+1z
−1(ms) + isz

−1(ms+1),

z−1(ms+1) ≥ z−1(ms).

Therefore, the elements m1,m2, . . . ,mk appear in z in this order. There are exactly n!/k! permuta-

tions with this property, so
∣∣A(x)∣∣ ≤ n!

k!
.
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