IMC 2023

Second Day, August 3, 2023

Problem 6. Ivan writes the matrix $\left(\begin{array}{ll}2 & 3 \\ 2 & 4\end{array}\right)$ on the board. Then he performs the following operation on the matrix several times:

- he chooses a row or a column of the matrix, and
- he multiplies or divides the chosen row or column entry-wise by the other row or column, respectively.
Can Ivan end up with the matrix $\left(\begin{array}{ll}2 & 4 \\ 2 & 3\end{array}\right)$ after finitely many steps?
(10 points)

Problem 7. Let V be the set of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$, differentiable on $(0,1)$, with the property that $f(0)=0$ and $f(1)=1$. Determine all $\alpha \in \mathbb{R}$ such that for every $f \in V$, there exists some $\xi \in(0,1)$ such that

$$
\begin{equation*}
f(\xi)+\alpha=f^{\prime}(\xi) \tag{10points}
\end{equation*}
$$

Problem 8. Let T be a tree with n vertices; that is, a connected simple graph on n vertices that contains no cycle. For every pair u, v of vertices, let $d(u, v)$ denote the distance between u and v, that is, the number of edges in the shortest path in T that connects u with v.

Consider the sums

$$
W(T)=\sum_{\substack{\{u, v\} \subseteq V(T) \\ u \neq v}} d(u, v) \quad \text { and } \quad H(T)=\sum_{\substack{\{u, v\} \subseteq V(T) \\ u \neq v}} \frac{1}{d(u, v)} .
$$

Prove that

$$
W(T) \cdot H(T) \geq \frac{(n-1)^{3}(n+2)}{4}
$$

Problem 9. We say that a real number V is good if there exist two closed convex subsets X, Y of the unit cube in \mathbb{R}^{3}, with volume V each, such that for each of the three coordinate planes (that is, the planes spanned by any two of the three coordinate axes), the projections of X and Y onto that plane are disjoint.

Find $\sup \{V \mid V$ is good $\}$.
(10 points)

Problem 10. For every positive integer n, let $f(n), g(n)$ be the minimal positive integers such that

$$
1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}=\frac{f(n)}{g(n)}
$$

Determine whether there exists a positive integer n for which $g(n)>n^{0.999 n}$.

