| |||||||||
IMC2015: Day 1, Problem 44. Determine whether or not there exist 15 integers $m_1,\ldots,m_{15}$ such that~ $$\displaystyle \sum_{k=1}^{15}\,m_k\cdot\arctan(k) = \arctan(16). \qquad\qquad(1)$$ Proposed by Gerhard Woeginger, Eindhoven University of Technology Hint: Use complex numbers and the complex norm. | |||||||||
© IMC |