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PROBLEMS AND SOLUTIONS

First day

Problem 1. (10 points)

Let X be a nonsingular matrix with columns X, Xo,..., X,,. Let Y bea
matrix with columns Xs, X3, ..., X,,,0. Show that the matrices A =Y X!
and B = XY have rank n — 1 and have only 0’s for eigenvalues.

Solution. Let J = (a;;) be the n x n matrix where a;; = 1ifi = j+1
and a;; = 0 otherwise. The rank of J is n — 1 and its only eigenvalues are
0’s. Moreover Y = XJ and A =YX ' =XJX !, B=X"1lY =J. It
follows that both A and B have rank n — 1 with only 0’s for eigenvalues.

Problem 2. (15 points)
Let f be a continuous function on [0, 1] such that for every x € [0, 1] we

! 1—a2? 1 1
have / f(t)dt > . Show that / fA(t)dt > 3
T 0
Solution. From the inequality

1

0§/Ol(f(x)—:U)Qdm:/ole(m)d:U—Q/O xf(x)d:z:—i—/oledm

we get

/01 f2($)dl‘ > 2/01 xf(x)dx — /01 22dx = 2/01 xf(x)dx — é

1,1 1q 1
From the hypotheses we have / / f(t)dtdx > / dzx or / tf(t)dt >
0 Jz 0 0

1
3 This completes the proof.

Problem 3. (15 points)

Let f be twice continuously differentiable on (0, 4+00) such that
lir61+ f'(z) = —oo and lir&_ 1" (z) = +o00. Show that
T— T—

f@)

0 f/(x)




Solution. Since f’ tends to —oo and f” tends to +o0o as z tends to
0+, there exists an interval (0,r) such that f'(z) < 0 and f”(z) > 0 for all
x € (0,7). Hence f is decreasing and f’ is increasing on (0,7). By the mean
value theorem for every 0 < x < xg < r we obtain

f(x) = flxzo) = f(€)(x — 20) > 0,

for some & € (x,zp). Taking into account that f’ is increasing, f'(z) <
7(6) < 0, we gt

f'(6) _ f(@) = f(zo)
r—x9 < f,(x)(l'—l'o) = W < 0.
Taking limits as « tends to 0+ we obtain
—x0 < hmg (i)&f ;,((?) < limrri %Lip ;/((Z)) <0.
f(z)

Since this happens for all zg € (0,7) we deduce that lim exists and

0t ()
f@) _

ooy f(z)

Problem 4. (15 points)
Let F': (1,00) — R be the function defined by

2
7 dt

Show that F' is one-to-one (i.e. injective) and find the range (i.e. set of
values) of F.

Solution. From the definition we have

-1
Fl(z) = xlnx , 2> 1.

Therefore F'(x) > 0 for « € (1,00). Thus F is strictly increasing and hence
one-to-one. Since

1
> (22 — nd— : x<t<a?}=
F(x) > (z m)mln{lnt m_t_z}



as r — 00, it follows that the range of F'is (F'(14),00). In order to determine
F(1+4) we substitute t = €” in the definition of F' and we get

2Inx eV
F(x) = / —dv.
Inz v
Hence
2Inx 1 9
F(z) < 621”/ —dv =2"In2
Inz U

and similarly F(x) > zln2. Thus F(1+) = In2.

Problem 5. (20 points)
Let A and B be real n x n matrices. Assume that there exist n + 1
different real numbers t1,to, ..., t,41 such that the matrices

Ci=A+tB, i=12,...,n+1,

are nilpotent (i.e. C* =0).
Show that both A and B are nilpotent.

Solution. We have that
(A+tB)" = A" +tP +t*Py+ -+ " 'P, +t"B"

for some matrices Py, Py, ..., P,_1 not depending on t.
Assume that a,p1,p2,...,pn—1,b are the (i,j)-th entries of the corre-
sponding matrices A", P1, P, ..., P,_1, B™. Then the polynomial

bt + ppit" 4 pot +pit+a

has at least n + 1 roots t1,t9,...,t,+1. Hence all its coefficients vanish.
Therefore A" =0, B" =0, P, =0; and A and B are nilpotent.

Problem 6. (25 points)
Let p > 1. Show that there exists a constant K, > 0 such that for every
x,y € R satisfying |z|P + |y|P = 2, we have

(x-y? <K, (14— (z+9)?).



Solution. Let 0 < ¢ < 1. First we show that there exists K, s > 0 such
that ( 2
r—y
f(x7y) 4 _ (CL' _|_ y)2 S p,é
for every (z,y) € Ds ={(z,y) : |z —y| =6,z + |y|P = 2}.
Since Dg is compact it is enough to show that f is continuous on Dy.

For this we show that the denominator of f is different from zero. Assume
P

the contrary. Then |z + y| = 2, and BUT—i—y = 1. Since p > 1, the function

T P P P
Fyfr_ el + )

2

P z|P + |y|P

SNCIEYT

whenever

g(t) = [t|P is strictly convex, in other words

Tty
2

1 =

x # y. So for some (x,y) € D5 we have

p

T
+y . We get a contradiction.

2
If z and y have different signs then (x,y) € Dy for all 0 < § < 1 because

then |z —y| > max{|z|,|y|} > 1 > J. So we may further assume without loss
of generality that z > 0, y > 0 and 2P + y? = 2. Set t =1+ t. Then

_ /p
y = (2—a2")P=2- 1+t)P)/P= (2 — (1 +pt+ LPQ Dy 0(t2)))1

= (1 —pt — @tz + 0(t2))

1/p

1

= 1+ 11) (—pt - Z@tz + o(tz)) 3 (% - 1) (—pt + o(t))? + o(t?)

1 1
- 1—t—th2+0(t2) —th2+o(t2)
= 1—t—(p—Dt*+o(t?).

We have
(x —y)? = (2t + o(t))? = 4t + o(t?)

and
4—(z4y)*=4—2—(p—1)t?+o(t?))?*=4—4+4(p—1)t*+o(t*)=4(p—1)t*+-0(t?).

So there exists &, > 0 such that if [t| < &, we have (z—y)? < 5t2, 4—(z+y)? >
3(p — 1)t2. Then

() (w—y)? <5t =



if |x — 1] < 6p. From the symmetry we have that (x) also holds when
ly — 1| < 0p.

To finish the proof it is enough to show that |z — y| > 26, whenever
|z —1| > 6, |y — 1] > 6, and 2P 4+ yP = 2. Indeed, since 2P + yP = 2 we have
T+ y)p _ 2ty

that max{x,y} > 1. Solet x —1 > §,. Since 5

get x +y < 2. Then z —y > 2(x — 1) > 20,

=1 we

Second day

Problem 1. (10 points)

Let A be 3 x 3 real matrix such that the vectors Au and u are orthogonal
for each column vector u € R3. Prove that:

a) AT = —A, where AT denotes the transpose of the matrix A;

b) there exists a vector v € R?® such that Au = v x u for every u € R?,
where v X u denotes the vector product in R3.

Solution. a) Set A = (a;;), u = (u1,u2,u3) . If we use the orthogonal-
ity condition

(1) (Au,u) =0
with u; = d; we get agr = 0. If we use (1) with u; = d;5 + di, We get
agk + am + Gk + Gmm =0

and hence ay,, = —amk-
b) Set v1 = —as3, v = a13, v3 = —aqe. Then

Au = (voug — v3ug, V3up — V1U3, V1UL — vgul)T =0 X U.

Problem 2. (15 points)
Let {b,}o2, be a sequence of positive real numbers such that by = 1,

bp =2 ++/by_1 — 24/1 +y/bp_1. Calculate
> 2"
n=1



Solution. Put a,, = 1+ /b, for n > 0. Then a, > 1, ag = 2 and

anp =1+ \/1 +an—1— 2\/(171,1 = /Qn-1,

50 ap = 227", Then

N N N
dob2" = ) (an—1)%2" = [a22" — 2" 427
n=1 n=1 n=1

[(an—1 —1)2" — (an — 1)2"*]

I
™ =

Il
—

n
N

2277 1
Put 2 =2"Y. Then x — 0 as N — oo and so

227" 1 27 — 1
Zb2N—hm (2—27N>:lim<2—2 ):2—21112.
N—o0 2 x—0 x

Problem 3. (15 points)

Let all roots of an n-th degree polynomial P(z) with complex coefficients
lie on the unit circle in the complex plane. Prove that all roots of the
polynomial

22P'(2) — nP(z)

lie on the same circle.

Solution. It is enough to consider only polynomials with leading coef-
ficient 1. Let P(z) = (2 — a1)(z — a2) ... (2 — ay,) with |o;| = 1, where the

complex numbers aq, ao,...,q, may coincide.
We have
P(z) = 22P'(2) —nP(z) = (24 a1)(z —ag) ... (2 — ap) +
+z—a1)(z+az)...(z—ap)+- -+ (z—a1)(z —aa) ... (2 + an).

ﬁ n 2 2

Hence, (2) = Z 2t %% Since ReZ ta_ 2 o for all complex z,
P(z)  [Zz— o z—« |z—oz|2

,2:|2

Z

P -
it follows that Re% # 0. Hence P(z) = 0 implies |z| = 1.
z

a, z # a, we deduce that in our case Re . From |z| # 1



Problem 4. (15 points)
a) Prove that for every € > 0 there is a positive integer n and real
numbers Aq,...,\, such that

max
z€[—1,1]

n
T — Z )\km%ﬂ <e
k=

b) Prove that for every odd continuous function f on [—1,1] and for every

€ > 0 there is a positive integer n and real numbers p1, ..., u, such that
n
2k+1
max x
me[fl,l] g Hi

Recall that f is odd means that f(x) = —f(—=x) for all x € [-1,1].
Solution. a) Let n be such that (1 —&2)" <e. Then |z(1 — 22)"| < ¢

for every € [—1,1]. Thus one can set A\ = (—1)F*1 Z because then

T — Z )\kaki-f—l — Z(_l)k‘ <n> x2]€+1 — "E(]_ _ zZ)n.
k=1 k=0 k

b) From the Weierstrass theorem there is a polynomial, say p € II,,, such
that

(@) = pla)] < 5.

Set a(x) = 3 {p(x) — p(~)}. Then

£(2) ~ a(e) = 3 {f@) ~ p(a)} — 5L (-) — p(—2)}

and

(1) max |£(2) — g(@)] < 3 max|f(z) - p(e)|+ 5 max |f(~z) — p(—a)| < =

lz|<1 — 2 z[<1 2 |z|<1 2

But ¢ is an odd polynomial in II,, and it can be written as

m m
q(z) = Z b = bz + Z b2k,
k=0 k=1



If by = 0 then (1) proves b). If by # 0 then one applies a) with 2’2 | instead
0
of € to get
- 2k+1| _ €
(2) ‘Igrcl‘i)i box — Z boARx < 3

k=1

for appropriate n and A1, Ag, ..., \,. Now b) follows from (1) and (2) with
max{n, m} instead of n.

Problem 5. (10415 points)
a) Prove that every function of the form

ao

N
5 Teosz+ Z ancos (nx)

n=2

fz) =

with |ag| < 1, has positive as well as negative values in the period [0, 27).
b) Prove that the function

F(x) = Z cos (n2x)

has at least 40 zeros in the interval (0, 1000).

Solution. a) Let us consider the integral

27
; f(z)(1 £ cosx)dr = m(ag £ 1).
The assumption that f(x) > 0 implies ap > 1. Similarly, if f(z) < 0 then
ag < —1. In both cases we have a contradiction with the hypothesis of the
problem.
b) We shall prove that for each integer N and for each real number h > 24
and each real number y the function

N 3
Fy(xz) = Z cos (xn?)
n=1

changes sign in the interval (y,y + h). The assertion will follow immediately
from here.



Consider the integrals

y+h y+h
L :/ Fy(x)dx, P :/ Fy(x)cos z dz.
y y

If Fy(z) does not change sign in (y,y + h) then we have

y+h
< [7 1 (e)de = — 0.
Yy

y+h
/ Fn(z)dz
y

Hence, it is enough to prove that

[L2| > |I1].

Obviously, for each « # 0 we have

Hence

(1)

|| =

y+h
/ cos (ax)dx
y

y+h

N 3
Z / cos (zn?)dx
n=1"Y

On the other hand we have

where

I, =

Al <

N ryth 3
Z / cos zcos (zn2)dz
y

3

y+h
/ (1 + cos (2z))dz +
y

Ny 3 3
% Z/y " (cos (x(n5 - 1)) + cos (x(n5 + 1))) dx

n=2

N | =

_l’_




10

2
We use that n% —-1> gn% for n > 3 and we get

N
1 2 1 2 o dt
Al < -+ +3 —<—+7+3/ — < 6.
TR B D B AW,k S
Hence
1
(2) |12| > §h — 6.

We use that h > 24 and inequalities (1), (2) and we obtain |Is| > |I1]. The
proof is completed.

Problem 6. (20 points)
Suppose that {f,}52; is a sequence of continuous functions on the inter-

val [0, 1] such that
1 T
/0 Jn(@)fu(@)de = { é i Z;ﬁ ”

sup{|fn(z)] : z€[0,1]] and n =1,2,...} < +o0.
Show that there exists no subsequence {f,, } of {f,} such that klim fri (@)
— 0
exists for all z € [0,1].

and

Solution. It is clear that one can add some functions, say {g,,}, which
satisfy the hypothesis of the problem and the closure of the finite linear
combinations of {f,} U{gm} is L2]0,1]. Therefore without loss of generality
we assume that {f,} generates Lo[0,1].

Let us suppose that there is a subsequence {ny} and a function f such
that

fop( ) — f( ) for every z € 0,1].

Fix m € N. From Lebesgue S theorem we have

0= /0 @) fo () — / fonl

k—o0

1
Hence / fm(x) f(z)dz = 0 for every m € N, which implies f(x) = 0 almost
0

everywhere. Using once more Lebesgue’s theorem we get

1—/ ank dxkjog/ol f(z)dx =

The contradiction proves the statement.



