FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 – August 4, 1997, Plovdiv, BULGARIA

First day — August 1, 1997

Problems and Solutions

Problem 1.

Let $\{\varepsilon_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers, such that $\lim_{n\to\infty}\varepsilon_n = 0$. Find

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln\left(\frac{k}{n} + \varepsilon_n\right),$$

where ln denotes the natural logarithm.

Solution.

It is well known that

$$-1 = \int_0^1 \ln x dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \ln\left(\frac{k}{n}\right)$$

(Riemman's sums). Then

$$\frac{1}{n}\sum_{k=1}^{n}\ln\left(\frac{k}{n}+\varepsilon_{n}\right) \geq \frac{1}{n}\sum_{k=1}^{n}\ln\left(\frac{k}{n}\right)\underset{n\to\infty}{\longrightarrow} -1.$$

Given $\varepsilon > 0$ there exist n_0 such that $0 < \varepsilon_n \le \varepsilon$ for all $n \ge n_0$. Then

$$\frac{1}{n}\sum_{k=1}^{n}\ln\left(\frac{k}{n}+\varepsilon_{n}\right) \leq \frac{1}{n}\sum_{k=1}^{n}\ln\left(\frac{k}{n}+\varepsilon\right).$$

Since

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln\left(\frac{k}{n} + \varepsilon\right) = \int_{0}^{1} \ln(x + \varepsilon) dx$$
$$= \int_{\varepsilon}^{1+\varepsilon} \ln x dx$$

1

we obtain the result when ε goes to 0 and so

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln\left(\frac{k}{n} + \varepsilon_n\right) = -1.$$

well?

Problem 2. Suppose $\sum_{n=1}^{\infty} a_n$ converges. Do the following sums have to converge as

a) $a_1 + a_2 + a_4 + a_3 + a_8 + a_7 + a_6 + a_5 + a_{16} + a_{15} + \dots + a_9 + a_{32} + \dots$

b) $a_1 + a_2 + a_3 + a_4 + a_5 + a_7 + a_6 + a_8 + a_9 + a_{11} + a_{13} + a_{15} + a_{10} + a_{11} + a_{12} + a_{13} + a_{15} + a_{10} + a_{10}$ $a_{12} + a_{14} + a_{16} + a_{17} + a_{19} + \cdots$

Justify your answers.

Solution.

a) Yes. Let $S = \sum_{n=1}^{\infty} a_n$, $S_n = \sum_{k=1}^{n} a_k$. Fix $\varepsilon > 0$ and a number n_0 such that $|S_n - S| < \varepsilon$ for $n > n_0$. The partial sums of the permuted series have the form $L_{2^{n-1}+k} = S_{2^{n-1}} + S_{2^n} - S_{2^n-k}$, $0 \le k < 2^{n-1}$ and for $2^{n-1} > n_0$ we have $|L_{2^{n-1}+k} - S| < 3\varepsilon$, i.e. the permuted series converges.

b) No. Take
$$a_n = \frac{(-1)^{n+1}}{\sqrt{n}}$$
. Then $L_{3,2^{n-2}} = S_{2^{n-1}} + \sum_{k=2^{n-2}}^{2^{n-1}-1} \frac{1}{\sqrt{2k+1}}$
and $L_{3,2^{n-2}} - S_{2^{n-1}} \ge 2^{n-2} \frac{1}{\sqrt{2^n}} \underset{n \to \infty}{\longrightarrow} \infty$, so $L_{3,2^{n-2}} \underset{n \to \infty}{\longrightarrow} \infty$.

Problem 3.

Let A and B be real $n \times n$ matrices such that $A^2 + B^2 = AB$. Prove that if BA - AB is an invertible matrix then n is divisible by 3.

Solution.

Set
$$S = A + \omega B$$
, where $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. We have
 $S\overline{S} = (A + \omega B)(A + \overline{\omega}B) = A^2 + \omega BA + \overline{\omega}AB + B^2$
 $= AB + \omega BA + \overline{\omega}AB = \omega(BA - AB),$

because $\overline{\omega} + 1 = -\omega$. Since det $(S\overline{S}) = \det S$ det \overline{S} is a real number and det $\omega(BA - AB) = \omega^n \det(BA - AB)$ and det $(BA - AB) \neq 0$, then ω^n is a real number. This is possible only when n is divisible by 3.

$$\mathbf{2}$$

Problem 4.

Let α be a real number, $1 < \alpha < 2$.

a) Show that α has a unique representation as an infinite product

$$\alpha = \left(1 + \frac{1}{n_1}\right) \left(1 + \frac{1}{n_2}\right) \dots$$

where each n_i is a positive integer satisfying

$$n_i^2 \le n_{i+1}.$$

b) Show that α is rational if and only if its infinite product has the following property:

For some m and all $k \ge m$,

$$n_{k+1} = n_k^2.$$

Solution.

a) We construct inductively the sequence $\{n_i\}$ and the ratios

$$\theta_k = \frac{\alpha}{\prod_{1}^k (1 + \frac{1}{n_i})}$$

so that

$$\theta_k > 1$$
 for all k .

Choose n_k to be the least n for which

$$1 + \frac{1}{n} < \theta_{k-1}$$

 $(\theta_0 = \alpha)$ so that for each k,

(1)
$$1 + \frac{1}{n_k} < \theta_{k-1} \le 1 + \frac{1}{n_k - 1}.$$

Since

$$\theta_{k-1} \le 1 + \frac{1}{n_k - 1}$$

we have

$$1 + \frac{1}{n_{k+1}} < \theta_k = \frac{\theta_{k-1}}{1 + \frac{1}{n_k}} \le \frac{1 + \frac{1}{n_k - 1}}{1 + \frac{1}{n_k}} = 1 + \frac{1}{n_k^2 - 1}.$$

Hence, for each $k, n_{k+1} \ge n_k^2$.

Since $n_1 \ge 2, n_k \to \infty$ so that $\theta_k \to 1$. Hence

$$\alpha = \prod_{1}^{\infty} \left(1 + \frac{1}{n_k} \right).$$

The uniqueess of the infinite product will follow from the fact that on every step n_k has to be determine by (1).

Indeed, if for some k we have

$$1 + \frac{1}{n_k} \ge \theta_{k-1}$$

then $\theta_k \leq 1$, $\theta_{k+1} < 1$ and hence $\{\theta_k\}$ does not converge to 1. Now observe that for M > 1,

(2)
$$\left(1+\frac{1}{M}\right)\left(1+\frac{1}{M^2}\right)\left(1+\frac{1}{M^4}\right)\cdots = 1+\frac{1}{M}+\frac{1}{M^2}+\frac{1}{M^3}+\cdots = 1+\frac{1}{M-1}.$$

Assume that for some k we have

$$1 + \frac{1}{n_k - 1} < \theta_{k-1}.$$

Then we get

$$\frac{\alpha}{(1+\frac{1}{n_1})(1+\frac{1}{n_2})\dots} = \frac{\theta_{k-1}}{(1+\frac{1}{n_k})(1+\frac{1}{n_{k+1}})\dots}$$
$$\geq \frac{\theta_{k-1}}{(1+\frac{1}{n_k})(1+\frac{1}{n_k^2})\dots} = \frac{\theta_{k-1}}{1+\frac{1}{n_k-1}} > 1$$

– a contradiction.

b) From (2) α is rational if its product ends in the stated way.

Conversely, suppose α is the rational number $\frac{p}{q}$. Our aim is to show that for some m,

$$\theta_{m-1} = \frac{n_m}{n_m - 1}.$$

Suppose this is not the case, so that for every m,

(3)
$$\theta_{m-1} < \frac{n_m}{n_m - 1}.$$

For each k we write

$$\theta_k = \frac{p_k}{q_k}$$

as a fraction (not necessarily in lowest terms) where

$$p_0 = p, \quad q_0 = q$$

and in general

$$p_k = p_{k-1}n_k, \quad q_k = q_{k-1}(n_k+1).$$

The numbers $p_k - q_k$ are positive integers: to obtain a contradiction it suffices to show that this sequence is strictly decreasing. Now,

$$p_k - q_k - (p_{k-1} - q_{k-1}) = n_k p_{k-1} - (n_k + 1)q_{k-1} - p_{k-1} + q_{k-1}$$
$$= (n_k - 1)p_{k-1} - n_k q_{k-1}$$

and this is negative because

$$\frac{p_{k-1}}{q_{k-1}} = \theta_{k-1} < \frac{n_k}{n_k - 1}$$

by inequality (3).

Problem 5. For a natural n consider the hyperplane

$$R_0^n = \left\{ x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n x_i = 0 \right\}$$

and the lattice $Z_0^n = \{y \in R_0^n : \text{ all } y_i \text{ are integers}\}$. Define the (quasi-)norm in \mathbb{R}^n by $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ if $0 , and <math>||x||_{\infty} = \max_i |x_i|$. a) Let $x \in R_0^n$ be such that

$$\max_i x_i - \min_i x_i \le 1.$$

For every $p \in [1, \infty]$ and for every $y \in Z_0^n$ prove that

$$|x||_p \le ||x+y||_p.$$

b) For every $p \in (0,1)$, show that there is an n and an $x \in R_0^n$ with $\max_i x_i - \min_i x_i \le 1$ and an $y \in Z_0^n$ such that

$$||x||_p > ||x+y||_p$$

Solution.

a) For x = 0 the statement is trivial. Let $x \neq 0$. Then $\max_{i} x_i > 0$ and min $x_i < 0$. Hence $||x||_{\infty} < 1$. From the hypothesis on x it follows that:

i) If $x_j \leq 0$ then $\max_i x_i \leq x_j + 1$.

ii) If $x_j \ge 0$ then $\min_i x_i \ge x_j - 1$. Consider $y \in \mathbb{Z}_0^n, \ y \ne 0$. We split the indices $\{1, 2, \dots, n\}$ into five sets:

$$I(0) = \{i : y_i = 0\},$$

$$I(+,+) = \{i : y_i > 0, x_i \ge 0\}, \quad I(+,-) = \{i : y_i > 0, x_i < 0\},$$

$$I(-,+) = \{i : y_i < 0, x_i > 0\}, \quad I(-,-) = \{i : y_i < 0, x_i \le 0\}.$$

As least one of the last four index sets is not empty. If $I(+,+) \neq \emptyset$ or $I(-,-) \neq \emptyset$ then $||x+y||_{\infty} \ge 1 > ||x||_{\infty}$. If $I(+,+) = I(-,-) = \emptyset$ then $\sum y_i = 0$ implies $I(+,-) \neq \emptyset$ and $I(-,+) \neq \emptyset$. Therefore i) and ii) give $||x+y||_{\infty} \ge ||x||_{\infty}$ which completes the case $p = \infty$.

Now let $1 \leq p < \infty$. Then using i) for every $j \in I(+, -)$ we get $|x_j + y_j| = y_j - 1 + x_j + 1 \ge |y_j| - 1 + \max_i x_i$. Hence

$$|x_j + y_j|^p \ge |y_j| - 1 + |x_k|^p$$
 for every $k \in I(-,+)$ and $j \in I(+,-)$.

Similarly

$$|x_j + y_j|^p \ge |y_j| - 1 + |x_k|^p \text{ for every } k \in I(+, -) \text{ and } j \in I(-, +);$$
$$|x_j + y_j|^p \ge |y_j| + |x_j|^p \text{ for every } j \in I(+, +) \cup I(-, -).$$

Assume that $\sum_{j \in I(+,-)} 1 \ge \sum_{j \in I(-,+)} 1$. Then

$$||x+y||_p^p - ||x||_p^p$$

$$= \sum_{j \in I(+,+) \cup I(-,-)} (|x_j + y_j|^p - |x_j|^p) + \left(\sum_{j \in I(+,-)} |x_j + y_j|^p - \sum_{k \in I(-,+)} |x_k|^p\right) \\ + \left(\sum_{j \in I(-,+)} |x_j + y_j|^p - \sum_{k \in I(+,-)} |x_k|^p\right) \\ \ge \sum_{j \in I(+,+) \cup I(-,-)} |y_j| + \sum_{j \in I(+,-)} (|y_j| - 1)$$

$$+\left(\sum_{j\in I(-,+)} (|y_j|-1) - \sum_{j\in I(+,-)} 1 + \sum_{j\in I(-,+)} 1\right)$$

= $\sum_{i=1}^n |y_i| - 2\sum_{j\in I(+,-)} 1 = 2\sum_{j\in I(+,-)} (y_j-1) + 2\sum_{j\in I(+,+)} y_j \ge 0.$

The case $\sum_{j \in I(+,-)} 1 \leq \sum_{j \in I(-,+)} 1$ is similar. This proves the statement.

b) Fix $p \in (0, 1)$ and a rational $t \in (\frac{1}{2}, 1)$. Choose a pair of positive integers m and l such that mt = l(1 - t) and set n = m + l. Let

$$x_i = t,$$
 $i = 1, 2, ..., m;$ $x_i = t - 1,$ $i = m + 1, m + 2, ..., n;$
 $y_i = -1,$ $i = 1, 2, ..., m;$ $y_{m+1} = m;$ $y_i = 0,$ $i = m + 2, ..., n.$

Then $x \in R_0^n$, $\max_i x_i - \min_i x_i = 1$, $y \in Z_0^n$ and

$$||x||_p^p - ||x+y||_p^p = m(t^p - (1-t)^p) + (1-t)^p - (m-1+t)^p,$$

which is possitive for m big enough.

Problem 6. Suppose that *F* is a family of finite subsets of \mathbb{N} and for any two sets $A, B \in F$ we have $A \cap B \neq \emptyset$.

a) Is it true that there is a finite subset Y of \mathbb{N} such that for any $A, B \in F$ we have $A \cap B \cap Y \neq \emptyset$?

b) Is the statement a) true if we suppose in addition that all of the members of F have the same size?

Justify your answers.

Solution.

a) No. Consider $F = \{A_1, B_1, \dots, A_n, B_n, \dots\}$, where $A_n = \{1, 3, 5, \dots, 2n - 1, 2n\}$, $B_n = \{2, 4, 6, \dots, 2n, 2n + 1\}$.

b) Yes. We will prove inductively a stronger statement:

Suppose F, G are

two families of finite subsets of \mathbb{N} such that:

1) For every $A \in F$ and $B \in G$ we have $A \cap B \neq \emptyset$;

2) All the elements of F have the same size r, and elements of G – size s. (we shall write #(F) = r, #(G) = s).

Then there is a finite set Y such that $A \cup B \cup Y \neq \emptyset$ for every $A \in F$ and $B \in G$.

The problem b) follows if we take F = G.

Proof of the statement: The statement is obvious for r = s = 1. Fix the numbers r, s and suppose the statement is proved for all pairs F', G' with #(F') < r, #(G') < s. Fix $A_0 \in F$, $B_0 \in G$. For any subset $C \subset A_0 \cup B_0$, denote

$$F(C) = \{A \in F : A \cap (A_0 \cup B_0) = C\}$$

Then $F = \bigcup_{\substack{\emptyset \neq C \subset A_0 \cup B_0}} F(C)$. It is enough to prove that for any pair of nonempty sets $C, D \subset A_0 \cup B_0$ the families F(C) and G(D) satisfy the statement.

Indeed, if we denote by $Y_{C,D}$ the corresponding finite set, then the finite set $\bigcup_{C,D\subset A_0\cup B_0} Y_{C,D}$ will satisfy the statement for F and G. The proof for F(C) and G(D).

If $C \cap D \neq \emptyset$, it is trivial.

If $C \cap D = \emptyset$, then any two sets $A \in F(C)$, $B \in G(D)$ must meet outside $A_0 \cup B_0$. Then if we denote $\tilde{F}(C) = \{A \setminus C : A \in F(C)\}, \tilde{G}(D) = \{B \setminus D : B \in G(D)\}$, then $\tilde{F}(C)$ and $\tilde{G}(D)$ satisfy the conditions 1) and 2) above, with $\#(\tilde{F}(C)) = \#(F) - \#C < r, \#(\tilde{G}(D)) = \#(G) - \#D < s$, and the inductive assumption works.

8