First day - August 1, 1997

Problems and Solutions

Problem 1.

Let $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive real numbers, such that $\lim _{n \rightarrow \infty} \varepsilon_{n}=$ 0. Find

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\varepsilon_{n}\right),
$$

where \ln denotes the natural logarithm.

Solution.

It is well known that

$$
-1=\int_{0}^{1} \ln x d x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}\right)
$$

(Riemman's sums). Then

$$
\frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\varepsilon_{n}\right) \geq \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}\right) \underset{n \rightarrow \infty}{\longrightarrow}-1 .
$$

Given $\varepsilon>0$ there exist n_{0} such that $0<\varepsilon_{n} \leq \varepsilon$ for all $n \geq n_{0}$. Then

$$
\frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\varepsilon_{n}\right) \leq \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\varepsilon\right) .
$$

Since

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\varepsilon\right) & =\int_{0}^{1} \ln (x+\varepsilon) d x \\
& =\int_{\varepsilon}^{1+\varepsilon} \ln x d x
\end{aligned}
$$

we obtain the result when ε goes to 0 and so

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}+\varepsilon_{n}\right)=-1 .
$$

Problem 2.

Suppose $\sum_{n=1}^{\infty} a_{n}$ converges. Do the following sums have to converge as well?
a) $a_{1}+a_{2}+a_{4}+a_{3}+a_{8}+a_{7}+a_{6}+a_{5}+a_{16}+a_{15}+\cdots+a_{9}+a_{32}+\cdots$
b) $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{7}+a_{6}+a_{8}+a_{9}+a_{11}+a_{13}+a_{15}+a_{10}+$ $a_{12}+a_{14}+a_{16}+a_{17}+a_{19}+\cdots$

Justify your answers.

Solution.

a) Yes. Let $S=\sum_{n=1}^{\infty} a_{n}, S_{n}=\sum_{k=1}^{n} a_{k}$. Fix $\varepsilon>0$ and a number n_{0} such that $\left|S_{n}-S\right|<\varepsilon$ for $n>n_{0}$. The partial sums of the permuted series have the form $L_{2^{n-1}+k}=S_{2^{n-1}}+S_{2^{n}}-S_{2^{n}-k}, 0 \leq k<2^{n-1}$ and for $2^{n-1}>n_{0}$ we have $\left|L_{2^{n-1}+k}-S\right|<3 \varepsilon$, i.e. the permuted series converges.
b) No. Take $a_{n}=\frac{(-1)^{n+1}}{\sqrt{n}}$.Then $L_{3.2^{n-2}}=S_{2^{n-1}}+\sum_{k=2^{n-2}}^{2^{n-1}-1} \frac{1}{\sqrt{2 k+1}}$ and $L_{3.2^{n-2}}-S_{2^{n-1}} \geq 2^{n-2} \frac{1}{\sqrt{2^{n}}} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \infty$, so $L_{3.2^{n-2}} \underset{n \rightarrow \infty}{\longrightarrow} \infty$.

Problem 3.

Let A and B be real $n \times n$ matrices such that $A^{2}+B^{2}=A B$. Prove that if $B A-A B$ is an invertible matrix then n is divisible by 3 .

Solution.

Set $S=A+\omega B$, where $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. We have

$$
\begin{aligned}
S \bar{S} & =(A+\omega B)(A+\bar{\omega} B)=A^{2}+\omega B A+\bar{\omega} A B+B^{2} \\
& =A B+\omega B A+\bar{\omega} A B=\omega(B A-A B),
\end{aligned}
$$

because $\bar{\omega}+1=-\omega$. Since $\operatorname{det}(S \bar{S})=\operatorname{det} S$. $\operatorname{det} \bar{S}$ is a real number and $\operatorname{det} \omega(B A-A B)=\omega^{n} \operatorname{det}(B A-A B)$ and $\operatorname{det}(B A-A B) \neq 0$, then ω^{n} is a real number. This is possible only when n is divisible by 3 .

Problem 4.

Let α be a real number, $1<\alpha<2$.
a) Show that α has a unique representation as an infinite product

$$
\alpha=\left(1+\frac{1}{n_{1}}\right)\left(1+\frac{1}{n_{2}}\right) \ldots
$$

where each n_{i} is a positive integer satisfying

$$
n_{i}^{2} \leq n_{i+1}
$$

b) Show that α is rational if and only if its infinite product has the following property:

For some m and all $k \geq m$,

$$
n_{k+1}=n_{k}^{2}
$$

Solution.

a) We construct inductively the sequence $\left\{n_{i}\right\}$ and the ratios

$$
\theta_{k}=\frac{\alpha}{\prod_{1}^{k}\left(1+\frac{1}{n_{i}}\right)}
$$

so that

$$
\theta_{k}>1 \text { for all } k
$$

Choose n_{k} to be the least n for which

$$
1+\frac{1}{n}<\theta_{k-1}
$$

$\left(\theta_{0}=\alpha\right)$ so that for each k,

$$
\begin{equation*}
1+\frac{1}{n_{k}}<\theta_{k-1} \leq 1+\frac{1}{n_{k}-1} \tag{1}
\end{equation*}
$$

Since

$$
\theta_{k-1} \leq 1+\frac{1}{n_{k}-1}
$$

we have

$$
1+\frac{1}{n_{k+1}}<\theta_{k}=\frac{\theta_{k-1}}{1+\frac{1}{n_{k}}} \leq \frac{1+\frac{1}{n_{k}-1}}{1+\frac{1}{n_{k}}}=1+\frac{1}{n_{k}^{2}-1}
$$

Hence, for each $k, n_{k+1} \geq n_{k}^{2}$.
Since $n_{1} \geq 2, n_{k} \rightarrow \infty$ so that $\theta_{k} \rightarrow 1$. Hence

$$
\alpha=\prod_{1}^{\infty}\left(1+\frac{1}{n_{k}}\right) .
$$

The uniquness of the infinite product will follow from the fact that on every step n_{k} has to be determine by (1).

Indeed, if for some k we have

$$
1+\frac{1}{n_{k}} \geq \theta_{k-1}
$$

then $\theta_{k} \leq 1, \theta_{k+1}<1$ and hence $\left\{\theta_{k}\right\}$ does not converge to 1 .
Now observe that for $M>1$,
(2) $\left(1+\frac{1}{M}\right)\left(1+\frac{1}{M^{2}}\right)\left(1+\frac{1}{M^{4}}\right) \cdots=1+\frac{1}{M}+\frac{1}{M^{2}}+\frac{1}{M^{3}}+\cdots=1+\frac{1}{M-1}$.

Assume that for some k we have

$$
1+\frac{1}{n_{k}-1}<\theta_{k-1}
$$

Then we get

$$
\begin{aligned}
\frac{\alpha}{\left(1+\frac{1}{n_{1}}\right)\left(1+\frac{1}{n_{2}}\right) \ldots} & =\frac{\theta_{k-1}}{\left(1+\frac{1}{n_{n}}\right)\left(1+\frac{1}{n_{k+1}}\right) \ldots} \\
& \geq \frac{\theta_{k-1}}{\left(1+\frac{1}{n_{k}}\right)\left(1+\frac{1}{n_{k}^{2}}\right) \ldots}=\frac{\theta_{k-1}}{1+\frac{1}{n_{k}-1}}>1
\end{aligned}
$$

- a contradiction.
b) From (2) α is rational if its product ends in the stated way.

Conversely, suppose α is the rational number $\frac{p}{q}$. Our aim is to show that for some m,

$$
\theta_{m-1}=\frac{n_{m}}{n_{m}-1} .
$$

Suppose this is not the case, so that for every m,

$$
\begin{equation*}
\theta_{m-1}<\frac{n_{m}}{n_{m}-1} \tag{3}
\end{equation*}
$$

For each k we write

$$
\theta_{k}=\frac{p_{k}}{q_{k}}
$$

as a fraction (not necessarily in lowest terms) where

$$
p_{0}=p, \quad q_{0}=q
$$

and in general

$$
p_{k}=p_{k-1} n_{k}, \quad q_{k}=q_{k-1}\left(n_{k}+1\right) .
$$

The numbers $p_{k}-q_{k}$ are positive integers: to obtain a contradiction it suffices to show that this sequence is strictly decreasing. Now,

$$
\begin{aligned}
p_{k}-q_{k}-\left(p_{k-1}-q_{k-1}\right) & =n_{k} p_{k-1}-\left(n_{k}+1\right) q_{k-1}-p_{k-1}+q_{k-1} \\
& =\left(n_{k}-1\right) p_{k-1}-n_{k} q_{k-1}
\end{aligned}
$$

and this is negative because

$$
\frac{p_{k-1}}{q_{k-1}}=\theta_{k-1}<\frac{n_{k}}{n_{k}-1}
$$

by inequality (3).
Problem 5. For a natural n consider the hyperplane

$$
R_{0}^{n}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}=0\right\}
$$

and the lattice $Z_{0}^{n}=\left\{y \in R_{0}^{n}\right.$: all y_{i} are integers $\}$. Define the (quasi-)norm in \mathbb{R}^{n} by $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ if $0<p<\infty$, and $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$.
a) Let $x \in R_{0}^{n}$ be such that

$$
\max _{i} x_{i}-\min _{i} x_{i} \leq 1 .
$$

For every $p \in[1, \infty]$ and for every $y \in Z_{0}^{n}$ prove that

$$
\|x\|_{p} \leq\|x+y\|_{p} .
$$

b) For every $p \in(0,1)$, show that there is an n and an $x \in R_{0}^{n}$ with $\max _{i} x_{i}-\min _{i} x_{i} \leq 1$ and an $y \in Z_{0}^{n}$ such that

$$
\|x\|_{p}>\|x+y\|_{p} .
$$

Solution.

a) For $x=0$ the statement is trivial. Let $x \neq 0$. Then $\max _{i} x_{i}>0$ and $\min _{i} x_{i}<0$. Hence $\|x\|_{\infty}<1$. From the hypothesis on x it follows that:
i) If $x_{j} \leq 0$ then $\max _{i} x_{i} \leq x_{j}+1$.
ii) If $x_{j} \geq 0$ then $\min _{i} x_{i} \geq x_{j}-1$.

Consider $y \in Z_{0}^{n}, \stackrel{i}{y} \neq 0$. We split the indices $\{1,2, \ldots, n\}$ into five sets:

$$
I(0)=\left\{i: y_{i}=0\right\},
$$

$$
I(+,+)=\left\{i: y_{i}>0, x_{i} \geq 0\right\}, \quad I(+,-)=\left\{i: y_{i}>0, x_{i}<0\right\}
$$

$$
I(-,+)=\left\{i: y_{i}<0, x_{i}>0\right\}, \quad I(-,-)=\left\{i: y_{i}<0, x_{i} \leq 0\right\} .
$$

As least one of the last four index sets is not empty. If $I(+,+) \neq \varnothing$ or $I(-,-) \neq \emptyset$ then $\|x+y\|_{\infty} \geq 1>\|x\|_{\infty}$. If $I(+,+)=I(-,-)=\varnothing$ then $\sum y_{i}=0$ implies $I(+,-) \neq \varnothing$ and $I(-,+) \neq \varnothing$. Therefore i) and ii) give $\|x+y\|_{\infty} \geq\|x\|_{\infty}$ which completes the case $p=\infty$.

Now let $1 \leq p<\infty$. Then using i) for every $j \in I(+,-)$ we get $\left|x_{j}+y_{j}\right|=y_{j}-1+x_{j}+1 \geq\left|y_{j}\right|-1+\max _{i} x_{i}$. Hence

$$
\left|x_{j}+y_{j}\right|^{p} \geq\left|y_{j}\right|-1+\left|x_{k}\right|^{p} \text { for every } k \in I(-,+) \text { and } j \in I(+,-) .
$$

Similarly

$$
\begin{gathered}
\left|x_{j}+y_{j}\right|^{p} \geq\left|y_{j}\right|-1+\left|x_{k}\right|^{p} \text { for every } k \in I(+,-) \text { and } j \in I(-,+) ; \\
\left|x_{j}+y_{j}\right|^{p} \geq\left|y_{j}\right|+\left|x_{j}\right|^{p} \text { for every } j \in I(+,+) \cup I(-,-) .
\end{gathered}
$$

Assume that $\sum_{j \in I(+,-)} 1 \geq \sum_{j \in I(-,+)} 1$. Then

$$
\begin{aligned}
& \|x+y\|_{p}^{p}-\|x\|_{p}^{p} \\
= & \sum_{j \in I(+,+) \cup I(-,-)}\left(\left|x_{j}+y_{j}\right|^{p}-\left|x_{j}\right|^{p}\right)+\left(\sum_{j \in I(+,-)}\left|x_{j}+y_{j}\right|^{p}-\sum_{k \in I(-,+)}\left|x_{k}\right|^{p}\right) \\
& +\left(\sum_{j \in I(-,+)}\left|x_{j}+y_{j}\right|^{p}-\sum_{k \in I(+,-)}\left|x_{k}\right|^{p}\right) \\
\geq & \sum_{j \in I(+,+) \cup I(-,-)}\left|y_{j}\right|+\sum_{j \in I(+,-)}\left(\left|y_{j}\right|-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\sum_{j \in I(-,+)}\left(\left|y_{j}\right|-1\right)-\sum_{j \in I(+,-)} 1+\sum_{j \in I(-,+)} 1\right) \\
= & \sum_{i=1}^{n}\left|y_{i}\right|-2 \sum_{j \in I(+,-)} 1=2 \sum_{j \in I(+,-)}\left(y_{j}-1\right)+2 \sum_{j \in I(+,+)} y_{j} \geq 0 .
\end{aligned}
$$

The case $\sum_{j \in I(+,-)} 1 \leq \sum_{j \in I(-,+)} 1$ is similar. This proves the statement.
b) Fix $p \in(0,1)$ and a rational $t \in\left(\frac{1}{2}, 1\right)$. Choose a pair of positive integers m and l such that $m t=l(1-t)$ and set $n=m+l$. Let

$$
\begin{array}{lll}
x_{i}=t, & i=1,2, \ldots, m ; & x_{i}=t-1, \\
y_{i}=-1, & i=m+1, m+2, \ldots, n ; \\
=1,2, \ldots, m ; & y_{m+1}=m ; & y_{i}=0, i=m+2, \ldots, n .
\end{array}
$$

Then $x \in R_{0}^{n}, \max _{i} x_{i}-\min _{i} x_{i}=1, y \in Z_{0}^{n}$ and

$$
\|x\|_{p}^{p}-\|x+y\|_{p}^{p}=m\left(t^{p}-(1-t)^{p}\right)+(1-t)^{p}-(m-1+t)^{p},
$$

which is possitive for m big enough.

Problem 6. Suppose that F is a family of finite subsets of \mathbb{N} and for any two sets $A, B \in F$ we have $A \cap B \neq \varnothing$.
a) Is it true that there is a finite subset Y of \mathbb{N} such that for any $A, B \in F$ we have $A \cap B \cap Y \neq \emptyset$?
b) Is the statement a) true if we suppose in addition that all of the members of F have the same size?

Justify your answers.

Solution.

a) No. Consider $F=\left\{A_{1}, B_{1}, \ldots, A_{n}, B_{n}, \ldots\right\}$, where $A_{n}=\{1,3,5, \ldots, 2 n-$ $1,2 n\}, B_{n}=\{2,4,6, \ldots, 2 n, 2 n+1\}$.
b) Yes. We will prove inductively a stronger statement:

Suppose F, G are
two families of finite subsets of \mathbb{N} such that:

1) For every $A \in F$ and $B \in G$ we have $A \cap B \neq \emptyset$;
2) All the elements of F have the same size r, and elements of G - size s. (we shall write $\#(F)=r, \#(G)=s)$.

Then there is a finite set Y such that $A \cup B \cup Y \neq \emptyset$ for every $A \in F$ and $B \in G$.

The problem b) follows if we take $F=G$.
Proof of the statement: The statement is obvious for $r=s=1$. Fix the numbers r, s and suppose the statement is proved for all pairs F^{\prime}, G^{\prime} with $\#\left(F^{\prime}\right)<r, \#\left(G^{\prime}\right)<s$. Fix $A_{0} \in F, B_{0} \in G$. For any subset $C \subset A_{0} \cup B_{0}$, denote

$$
F(C)=\left\{A \in F: A \cap\left(A_{0} \cup B_{0}\right)=C\right\} .
$$

Then $F=\underset{\emptyset \neq C \subset A_{0} \cup B_{0}}{\cup} F(C)$. It is enough to prove that for any pair of nonempty sets $C, D \subset A_{0} \cup B_{0}$ the families $F(C)$ and $G(D)$ satisfy the statement.

Indeed, if we denote by $Y_{C, D}$ the corresponding finite set, then the finite set $\underset{C, D \subset A_{0} \cup B_{0}}{\cup} Y_{C, D}$ will satisfy the statement for F and G. The proof for $F(C)$ and $G(D)$.

If $C \cap D \neq \emptyset$, it is trivial.
If $C \cap D=\varnothing$, then any two sets $A \in F(C), B \in G(D)$ must meet outside $A_{0} \cup B_{0}$. Then if we denote $\tilde{F}(C)=\{A \backslash C: A \in F(C)\}, \tilde{G}(D)=$ $\{B \backslash D: B \in G(D)\}$, then $\tilde{F}(C)$ and $\tilde{G}(D)$ satisfy the conditions 1) and 2) above, with $\#(\tilde{F}(C))=\#(F)-\# C<r, \#(\tilde{G}(D))=\#(G)-\# D<s$, and the inductive assumption works.

