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Problems and Solutions

Problem 1.

Let f be a C3(R) non-negative function, f(0)=f ′(0)=0, 0 < f ′′(0).
Let

g(x) =

(√

f(x)

f ′(x)

)
′

for x 6= 0 and g(0) = 0. Show that g is bounded in some neighbourhood of 0.
Does the theorem hold for f ∈ C2(R)?

Solution.

Let c =
1

2
f ′′(0). We have

g =
(f ′)2 − 2ff ′′

2(f ′)2
√

f
,

where

f(x) = cx2 + O(x3), f ′(x) = 2cx + O(x2), f ′′(x) = 2c + O(x).

Therefore (f ′(x))2 = 4c2x2 + O(x3),

2f(x)f ′′(x) = 4c2x2 + O(x3)

and

2(f ′(x))2
√

f(x) = 2(4c2x2 + O(x3))|x|
√

c + O(x).

g is bounded because

2(f ′(x))2
√

f(x)

|x|3 −→
x→0

8c5/2 6= 0

and f ′(x)2 − 2f(x)f ′′(x) = O(x3).
The theorem does not hold for some C2-functions.
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Let f(x) = (x + |x|3/2)2 = x2 + 2x2
√

|x|+ |x|3, so f is C2. For x > 0,

g(x) =
1

2

(

1

1 + 3

2

√
x

)
′

= −1

2
· 1

(1 + 3

2

√
x)2

· 3

4
· 1√

x
−→
x→0

−∞.

Problem 2.

Let M be an invertible matrix of dimension 2n × 2n, represented in
block form as

M =

[

A B

C D

]

and M−1 =

[

E F

G H

]

.

Show that detM.det H = det A.

Solution.

Let I denote the identity n× n matrix. Then

det M.det H = det

[

A B

C D

]

· det

[

I F

0 H

]

= det

[

A 0
C I

]

= detA.

Problem 3.

Show that
∞∑

n=1

(−1)n−1sin (log n)

nα
converges if and only if α > 0.

Solution.

Set f(t) =
sin (log t)

tα
. We have

f ′(t) =
−α

tα+1
sin (log t) +

cos (log t)

tα+1
.

So |f ′(t)| ≤ 1 + α

tα+1
for α > 0. Then from Mean value theorem for some

θ ∈ (0, 1) we get |f(n+1)−f(n)| = |f ′(n+θ)| ≤ 1 + α

nα+1
. Since

∑ 1 + α

nα+1
< +∞

for α > 0 and f(n) −→
n→∞

0 we get that
∞∑

n=1

(−1)n−1f(n) =
∞∑

n=1

(f(2n−1)−f(2n))

converges.

Now we have to prove that
sin (log n)

nα
does not converge to 0 for α ≤ 0.

It suffices to consider α = 0.
We show that an = sin (log n) does not tend to zero. Assume the

contrary. There exist kn ∈ N and λn ∈
[

−1

2
,
1

2

]

for n > e2 such that
log n

π
=

kn + λn. Then |an| = sinπ|λn|. Since an → 0 we get λn → 0.
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We have kn+1 − kn =

=
log(n + 1)− log n

π
− (λn+1 − λn) =

1

π
log

(

1 +
1

n

)

− (λn+1 − λn).

Then |kn+1 − kn| < 1 for all n big enough. Hence there exists n0 so that

kn = kn0
for n > n0. So

log n

π
= kn0

+ λn for n > n0. Since λn → 0 we get

contradiction with log n →∞.

Problem 4.

a) Let the mapping f : Mn → R from the space

Mn = R
n2

of n× n matrices with real entries to reals be linear, i.e.:

(1) f(A + B) = f(A) + f(B), f(cA) = cf(A)

for any A,B ∈ Mn, c ∈ R. Prove that there exists a unique matrix C ∈ Mn

such that f(A) = tr(AC) for any A ∈ Mn. (If A = {aij}n
i,j=1 then

tr(A) =
n∑

i=1

aii).

b) Suppose in addition to (1) that

(2) f(A.B) = f(B.A)

for any A,B ∈ Mn. Prove that there exists λ ∈ R such that f(A) = λ.tr(A).

Solution.

a) If we denote by Eij the standard basis of Mn consisting of elementary
matrix (with entry 1 at the place (i, j) and zero elsewhere), then the entries
cij of C can be defined by cij = f(Eji). b) Denote by L the n2−1-dimensional
linear subspace of Mn consisting of all matrices with zero trace. The elements
Eij with i 6= j and the elements Eii−Enn, i = 1, . . . , n− 1 form a linear basis
for L. Since

Eij = Eij .Ejj −Ejj.Eij , i 6= j

Eii −Enn = Ein.Eni −Eni.Ein, i = 1, . . . , n− 1,

then the property (2) shows that f is vanishing identically on L. Now, for

any A ∈ Mn we have A− 1

n
tr(A).E ∈ L, where E is the identity matrix, and

therefore f(A) =
1

n
f(E).tr(A).
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Problem 5.

Let X be an arbitrary set, let f be an one-to-one function mapping
X onto itself. Prove that there exist mappings g1, g2 : X → X such that
f = g1 ◦ g2 and g1 ◦ g1 = id = g2 ◦ g2, where id denotes the identity mapping
on X.

Solution.

Let fn = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

, f0 = id, f−n = (f−1)n for every natural

number n. Let T (x) = {fn(x) : n ∈ Z} for every x ∈ X. The sets T (x) for
different x’s either coinside or do not intersect. Each of them is mapped by f

onto itself. It is enough to prove the theorem for every such set. Let A = T (x).
If A is finite, then we can think that A is the set of all vertices of a regular

n polygon and that f is rotation by
2π

n
. Such rotation can be obtained as a

composition of 2 symmetries mapping the n polygon onto itself (if n is even

then there are axes of symmetry making
π

n
angle; if n = 2k + 1 then there

are axes making k
2π

n
angle). If A is infinite then we can think that A = Z

and f(m) = m + 1 for every m ∈ Z. In this case we define g1 as a symmetry

relative to
1

2
, g2 as a symmetry relative to 0.

Problem 6.

Let f : [0, 1] → R be a continuous function. Say that f “crosses the
axis” at x if f(x) = 0 but in any neighbourhood of x there are y, z with
f(y) < 0 and f(z) > 0.

a) Give an example of a continuous function that “crosses the axis”
infiniteley often.

b) Can a continuous function “cross the axis” uncountably often?
Justify your answer.

Solution.

a) f(x) = x sin
1

x
.

b) Yes. The Cantor set is given by

C = {x ∈ [0, 1) : x =
∞∑

j=1

bj3
−j, bj ∈ {0, 2}}.

There is an one-to-one mapping f : [0, 1) → C. Indeed, for x =
∞∑

j=1

aj2
−j ,

aj ∈ {0, 1} we set f(x) =
∞∑

j=1

(2aj)3
−j . Hence C is uncountable.
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For k = 1, 2, . . . and i = 0, 1, 2, . . . , 2k−1 − 1 we set

ak,i = 3−k



6
k−2∑

j=0

aj3
j + 1



 , bk,i = 3−k



6
k−2∑

j=0

aj3
j + 2



 ,

where i =
k−2∑

j=0

aj2
j , aj ∈ {0, 1}. Then

[0, 1) \ C =
∞⋃

k=1

2k−1
−1⋃

i=0

(ak,i, bk,i),

i.e. the Cantor set consists of all points which have a trinary representation
with 0 and 2 as digits and the points of its compliment have some 1’s in their

trinary representation. Thus,
2k−1

−1∪
i=0

(ak,i, bk,i) are all points (exept ak,i) which

have 1 on k-th place and 0 or 2 on the j-th (j < k) places.
Noticing that the points with at least one digit equals to 1 are every-

where dence in [0,1] we set

f(x) =
∞∑

k=1

(−1)kgk(x).

where gk is a piece-wise linear continuous functions with values at the knots

gk

(
ak,i + bk,i

2

)

= 2−k, gk(0) = gk(1) = gk(ak,i) = gk(bk,i) = 0,

i = 0, 1, . . . , 2k−1 − 1.
Then f is continuous and f “crosses the axis” at every point of the

Cantor set.
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