FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS
 July 30 - August 4, 1997, Plovdiv, BULGARIA

Second day - August 2, 1997

Problems and Solutions

Problem 1.

Let f be a $C^{3}(\mathbb{R})$ non-negative function, $f(0)=f^{\prime}(0)=0,0<f^{\prime \prime}(0)$.
Let

$$
g(x)=\left(\frac{\sqrt{f(x)}}{f^{\prime}(x)}\right)^{\prime}
$$

for $x \neq 0$ and $g(0)=0$. Show that g is bounded in some neighbourhood of 0 . Does the theorem hold for $f \in C^{2}(\mathbb{R})$?

Solution.

Let $c=\frac{1}{2} f^{\prime \prime}(0)$. We have

$$
g=\frac{\left(f^{\prime}\right)^{2}-2 f f^{\prime \prime}}{2\left(f^{\prime}\right)^{2} \sqrt{f}}
$$

where

$$
f(x)=c x^{2}+O\left(x^{3}\right), \quad f^{\prime}(x)=2 c x+O\left(x^{2}\right), \quad f^{\prime \prime}(x)=2 c+O(x) .
$$

Therefore $\left(f^{\prime}(x)\right)^{2}=4 c^{2} x^{2}+O\left(x^{3}\right)$,

$$
2 f(x) f^{\prime \prime}(x)=4 c^{2} x^{2}+O\left(x^{3}\right)
$$

and

$$
2\left(f^{\prime}(x)\right)^{2} \sqrt{f(x)}=2\left(4 c^{2} x^{2}+O\left(x^{3}\right)\right)|x| \sqrt{c+O(x)} .
$$

g is bounded because

$$
\frac{2\left(f^{\prime}(x)\right)^{2} \sqrt{f(x)}}{|x|^{3}} \underset{x \rightarrow 0}{\longrightarrow} 8 c^{5 / 2} \neq 0
$$

and $f^{\prime}(x)^{2}-2 f(x) f^{\prime \prime}(x)=O\left(x^{3}\right)$.
The theorem does not hold for some C^{2}-functions.

Let $f(x)=\left(x+|x|^{3 / 2}\right)^{2}=x^{2}+2 x^{2} \sqrt{|x|}+|x|^{3}$, so f is C^{2}. For $x>0$,

$$
g(x)=\frac{1}{2}\left(\frac{1}{1+\frac{3}{2} \sqrt{x}}\right)^{\prime}=-\frac{1}{2} \cdot \frac{1}{\left(1+\frac{3}{2} \sqrt{x}\right)^{2}} \cdot \frac{3}{4} \cdot \frac{1}{\sqrt{x}} \underset{x \rightarrow 0}{\longrightarrow}-\infty
$$

Problem 2.

Let M be an invertible matrix of dimension $2 n \times 2 n$, represented in block form as

$$
M=\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right] \quad \text { and } \quad M^{-1}=\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]
$$

Show that $\operatorname{det} M . \operatorname{det} H=\operatorname{det} A$.

Solution.

Let I denote the identity $n \times n$ matrix. Then
$\operatorname{det} M \cdot \operatorname{det} H=\operatorname{det}\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \cdot \operatorname{det}\left[\begin{array}{cc}I & F \\ 0 & H\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}A & 0 \\ C & I\end{array}\right]=\operatorname{det} A$.

Problem 3.

Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \sin (\log n)}{n^{\alpha}}$ converges if and only if $\alpha>0$.

Solution.

Set $f(t)=\frac{\sin (\log t)}{t^{\alpha}}$. We have

$$
f^{\prime}(t)=\frac{-\alpha}{t^{\alpha+1}} \sin (\log t)+\frac{\cos (\log t)}{t^{\alpha+1}}
$$

So $\left|f^{\prime}(t)\right| \leq \frac{1+\alpha}{t^{\alpha+1}}$ for $\alpha>0$. Then from Mean value theorem for some $\theta \in(0,1)$ we get $|f(n+1)-f(n)|=\left|f^{\prime}(n+\theta)\right| \leq \frac{1+\alpha}{n^{\alpha+1}}$. Since $\sum \frac{1+\alpha}{n^{\alpha+1}}<+\infty$ for $\alpha>0$ and $f(n) \underset{n \rightarrow \infty}{\longrightarrow} 0$ we get that $\sum_{n=1}^{\infty}(-1)^{n-1} f(n)=\sum_{n=1}^{\infty}(f(2 n-1)-f(2 n))$ converges.

Now we have to prove that $\frac{\sin (\log n)}{n^{\alpha}}$ does not converge to 0 for $\alpha \leq 0$. It suffices to consider $\alpha=0$.

We show that $a_{n}=\sin (\log n)$ does not tend to zero. Assume the contrary. There exist $k_{n} \in \mathbb{N}$ and $\lambda_{n} \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ for $n>e^{2}$ such that $\frac{\log n}{\pi}=$ $k_{n}+\lambda_{n}$. Then $\left|a_{n}\right|=\sin \pi\left|\lambda_{n}\right|$. Since $a_{n} \rightarrow 0$ we get $\lambda_{n} \rightarrow 0$.

We have $k_{n+1}-k_{n}=$

$$
=\frac{\log (n+1)-\log n}{\pi}-\left(\lambda_{n+1}-\lambda_{n}\right)=\frac{1}{\pi} \log \left(1+\frac{1}{n}\right)-\left(\lambda_{n+1}-\lambda_{n}\right) .
$$

Then $\left|k_{n+1}-k_{n}\right|<1$ for all n big enough. Hence there exists n_{0} so that $k_{n}=k_{n_{0}}$ for $n>n_{0}$. So $\frac{\log n}{\pi}=k_{n_{0}}+\lambda_{n}$ for $n>n_{0}$. Since $\lambda_{n} \rightarrow 0$ we get contradiction with $\log n \rightarrow \infty$.

Problem 4.

a) Let the mapping $f: M_{n} \rightarrow \mathbb{R}$ from the space $M_{n}=\mathbb{R}^{n^{2}}$ of $n \times n$ matrices with real entries to reals be linear, i.e.:

$$
\begin{equation*}
f(A+B)=f(A)+f(B), \quad f(c A)=c f(A) \tag{1}
\end{equation*}
$$

for any $A, B \in M_{n}, c \in \mathbb{R}$. Prove that there exists a unique matrix $C \in M_{n}$ such that $f(A)=\operatorname{tr}(A C)$ for any $A \in M_{n}$. (If $A=\left\{a_{i j}\right\}_{i, j=1}^{n}$ then $\left.\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}\right)$.
b) Suppose in addition to (1) that

$$
\begin{equation*}
f(A . B)=f(B . A) \tag{2}
\end{equation*}
$$

for any $A, B \in M_{n}$. Prove that there exists $\lambda \in \mathbb{R}$ such that $f(A)=\lambda \cdot \operatorname{tr}(A)$.

Solution.

a) If we denote by $E_{i j}$ the standard basis of M_{n} consisting of elementary matrix (with entry 1 at the place (i, j) and zero elsewhere), then the entries $c_{i j}$ of C can be defined by $c_{i j}=f\left(E_{j i}\right)$. b) Denote by L the $n^{2}-1$-dimensional linear subspace of M_{n} consisting of all matrices with zero trace. The elements $E_{i j}$ with $i \neq j$ and the elements $E_{i i}-E_{n n}, i=1, \ldots, n-1$ form a linear basis for L. Since

$$
\begin{aligned}
E_{i j} & =E_{i j} \cdot E_{j j}-E_{j j} \cdot E_{i j}, \quad i \neq j \\
E_{i i}-E_{n n} & =E_{i n} \cdot E_{n i}-E_{n i} \cdot E_{i n}, i=1, \ldots, n-1,
\end{aligned}
$$

then the property (2) shows that f is vanishing identically on L. Now, for any $A \in M_{n}$ we have $A-\frac{1}{n} \operatorname{tr}(A) \cdot E \in L$, where E is the identity matrix, and therefore $f(A)=\frac{1}{n} f(E) \cdot \operatorname{tr}(A)$.

Problem 5.

Let X be an arbitrary set, let f be an one-to-one function mapping X onto itself. Prove that there exist mappings $g_{1}, g_{2}: X \rightarrow X$ such that $f=g_{1} \circ g_{2}$ and $g_{1} \circ g_{1}=i d=g_{2} \circ g_{2}$, where $i d$ denotes the identity mapping on X.

Solution.

Let $f^{n}=\underbrace{f \circ f \circ \cdots \circ f}_{n \text { times }}, f^{0}=i d, f^{-n}=\left(f^{-1}\right)^{n}$ for every natural number n. Let $T(x)=\left\{f^{n}(x): n \in \mathbb{Z}\right\}$ for every $x \in X$. The sets $T(x)$ for different x 's either coinside or do not intersect. Each of them is mapped by f onto itself. It is enough to prove the theorem for every such set. Let $A=T(x)$. If A is finite, then we can think that A is the set of all vertices of a regular n polygon and that f is rotation by $\frac{2 \pi}{n}$. Such rotation can be obtained as a composition of 2 symmetries mapping the n polygon onto itself (if n is even then there are axes of symmetry making $\frac{\pi}{n}$ angle; if $n=2 k+1$ then there are axes making $k \frac{2 \pi}{n}$ angle). If A is infinite then we can think that $A=\mathbb{Z}$ and $f(m)=m+1$ for every $m \in \mathbb{Z}$. In this case we define g_{1} as a symmetry relative to $\frac{1}{2}, g_{2}$ as a symmetry relative to 0 .

Problem 6.

Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Say that f "crosses the axis" at x if $f(x)=0$ but in any neighbourhood of x there are y, z with $f(y)<0$ and $f(z)>0$.
a) Give an example of a continuous function that "crosses the axis" infiniteley often.
b) Can a continuous function "cross the axis" uncountably often?

Justify your answer.

Solution.

a) $f(x)=x \sin \frac{1}{x}$.
b) Yes. The Cantor set is given by

$$
C=\left\{x \in[0,1): x=\sum_{j=1}^{\infty} b_{j} 3^{-j}, b_{j} \in\{0,2\}\right\}
$$

There is an one-to-one mapping $f:[0,1) \rightarrow C$. Indeed, for $x=\sum_{j=1}^{\infty} a_{j} 2^{-j}$, $a_{j} \in\{0,1\}$ we set $f(x)=\sum_{j=1}^{\infty}\left(2 a_{j}\right) 3^{-j}$. Hence C is uncountable.

For $k=1,2, \ldots$ and $i=0,1,2, \ldots, 2^{k-1}-1$ we set

$$
a_{k, i}=3^{-k}\left(6 \sum_{j=0}^{k-2} a_{j} 3^{j}+1\right), \quad b_{k, i}=3^{-k}\left(6 \sum_{j=0}^{k-2} a_{j} 3^{j}+2\right)
$$

where $i=\sum_{j=0}^{k-2} a_{j} 2^{j}, a_{j} \in\{0,1\}$. Then

$$
[0,1) \backslash C=\bigcup_{k=1}^{\infty} \bigcup_{i=0}^{2^{k-1}-1}\left(a_{k, i}, b_{k, i}\right)
$$

i.e. the Cantor set consists of all points which have a trinary representation with 0 and 2 as digits and the points of its compliment have some 1's in their trinary representation. Thus, ${\underset{i=0}{2^{k-1}}-1}_{\cup^{-1}}\left(a_{k, i}, b_{k, i}\right)$ are all points (exept $a_{k, i}$) which have 1 on k-th place and 0 or 2 on the j-th $(j<k)$ places.

Noticing that the points with at least one digit equals to 1 are everywhere dence in $[0,1]$ we set

$$
f(x)=\sum_{k=1}^{\infty}(-1)^{k} g_{k}(x)
$$

where g_{k} is a piece-wise linear continuous functions with values at the knots
$g_{k}\left(\frac{a_{k, i}+b_{k, i}}{2}\right)=2^{-k}, g_{k}(0)=g_{k}(1)=g_{k}\left(a_{k, i}\right)=g_{k}\left(b_{k, i}\right)=0$, $i=0,1, \ldots, 2^{k-1}-1$.

Then f is continuous and f "crosses the axis" at every point of the Cantor set.

