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Day 1
1. (a) Let aq,a9,... be a sequence of real numbers such that a; = 1 and a,4+1 > %an for all n.
Prove that the sequence
an

3\n—1
(3)
has a finite limit or tends to infinity. (10 points)
(b) Prove that for all a > 1 there exists a sequence aj, as, ... with the same properties such
that

(10 points)

. a . .
Solution. (a) Let b, = n 7- Then anq1 > %an is equivalent to b,11 > b,, thus the sequence

3\~

2

(by) is strictly increasing. Each increasing sequence has a finite limit or tends to infinity.
b) For all a > 1 there exists a sequence 1 = by < b < ... which converges to . Choosing

ay, = (%)n_l by, we obtain the required sequence (ay,).

2. Let aj,as...,as1 be non-zero elements of a field. We simultaneously replace each element with
the sum of the 50 remaining ones. In this way we get a sequence b; ..., bs1. If this new sequence is
a permutation of the original one, what can be the characteristic of the field? (The characteristic
of a field is p, if p is the smallest positive integer such that z +x + ...+ x = 0 for any element x

p
of the field. If there exists no such p, the characteristic is 0.) (20 points)
Solution. Let S = a1 +as + -+ + as1. Then by + by + --- + b5y = 505. Since by,bo, -+, b1 is a

permutation of ay, as, - -, a1, we get 50S = S, so 495 = 0. Assume that the characteristic of the
field is not equal to 7. Then 495 = 0 implies that S = 0. Therefore b; = —a; for : = 1,2,---,51.
On the other hand, b; = a,(;), where ¢ € S51. Therefore, if the characteristic is not 2, the sequence
aj,as,---,as; can be partitioned into pairs {a;, a@(i)} of additive inverses. But this is impossible,
since 51 is an odd number. It follows that the characteristic of the field is 7 or 2.

The characteristic can be either 2 or 7. For the case of 7, z;1 = ... = x51 = 1 is a possible
choice. For the case of 2, any elements can be chosen such that S = 0, since then b; = —a; = a;.

3. Let A be an n x n real matrix such that 34% = A% + A + I (I is the identity matrix). Show
that the sequence A* converges to an idempotent matrix. (A matrix B is called idempotent if
B? = B.) (20 points)

Solution. The minimal polynomial of A is a divisor of 322 — 22 — 2 — 1. This polynomial has three
different roots. This implies that A is diagonalizable: A = C~'DC where D is a diagonal matrix.
The eigenvalues of the matrices A and D are all roots of polynomial 323 — 22 — x — 1. One of the
three roots is 1, the remaining two roots have smaller absolute value than 1. Hence, the diagonal
elements of D*, which are the kth powers of the eigenvalues, tend to either 0 or 1 and the limit
M = lim D is idempotent. Then lim A*¥ = C~'MC is idempotent as well.

4. Determine the set of all pairs (a,b) of positive integers for which the set of positive integers
can be decomposed into two sets A and B such that a- A =b- B. (20 points)
Solution. Clearly a and b must be different since A and B are disjoint.



Let {a,b} be a solution and consider the sets A, B such that a- A =b- B. Denoting d = (a, b)
the greatest common divisor of @ and b, we have a = d-ay, b = d-by, (a1,b1) =1and a;-A =b;-B.
Thus {a1, b1} is a solution and it is enough to determine the solutions {a, b} with (a,b) = 1.

If 1€ Athena € a-A=05- B, thus b must be a divisor of a. Similarly, if 1 € B, then a is a
divisor of b. Therefore, in all solutions, one of numbers a, b is a divisor of the other one.

Now we prove that if n > 2, then (1,n) is a solution. For each positive integer k, let f(k)
be the largest non-negative integer for which n/(®|k. Then let A = {k : f(k)is odd} and
B ={k: f(k)is even}. This is a decomposition of all positive integers such that A =n - B.

5. Let g: [0,1] — R be a continuous function and let f,, : [0,1] — R be a sequence of functions
defined by fo(z) = g(z) and

Fasr(z) = %/0 fa)dt (€ (0,1, n=0,1,2,...).

Determine lim f,(z) for every z € (0,1]. (20 points)

B. We shall prove in two different ways that lim, . fn(z) = ¢(0) for every z € (0,1]. (The
second one is more lengthy but it tells us how to calculate f,, directly from g.)

Proof 1. First we prove our claim for non-decreasing g. In this case, by induction, one can
easily see that

1. each f, is non-decrasing as well, and

2. g(x) = folx) = fi(z) = fo(z) = ... 2 g(0)  (x € (0,1)).
Then (2) implies that there exists

hw) =l fuz) (o€ (0,1]).
n—oo
Clearly h is non-decreasing and ¢(0) < h(z) < f,(x) for any = € (0,1],n = 0,1,2,.... Therefore
to show that h(z) = ¢(0) for any = € (0, 1], it is enough to prove that h(1) cannot be greater than
9(0).
Suppose that h(1) > g(0). Then there exists a 0 < § < 1 such that k(1) > g(d). Using the
definition, (2) and (1) we get

1 ) 1
Faia(1) = / fult)dt < / olt)dt + /5 fu(t)dt < 59(8) + (1— 6) fu(1).

Hence
fr(1) = fr41(1) = 6(fa(1) — 9(d)) = 6(h(1) — g(d)) >0,

$0 fn(1) — —o0o, which is a contradiction.
Similarly, we can prove our claim for non-increasing continuous functions as well.
Now suppose that ¢ is an arbitrary continuous function on [0, 1]. Let

M(z) = sup g(¢), m(z) = inf g(¢) (x €[0,1))
te[0,x) t€(0,z]

Then on [0, 1] m is non-increasing, M is non-decreasing, both are continuous, m(z) < g(x) < M(z)
and M (0) = m(0) = ¢(0). Define the sequences of functions M, (x) and m,(x) in the same way
as fy, is defined but starting with My = M and mg = m.

Then one can easily see by induction that m,(z) < f,(z) < M, (x). By the first part of the
proof, lim, m,(z) = m(0) = ¢g(0) = M(0) = lim,, M,,(x) for any = € (0,1]. Therefore we must
have lim,, f,(x) = ¢(0).



Proof II. To make the notation clearer we shall denote the variable of f; by ;. By definition
(and Fubini theorem) we get that

1 Tntl q T2 1
fn+1(‘rn+1) = / / / / / CL'() dl’odl’l .dx,
$n+1 Tn-1

dl‘odl‘l PN dl‘n
9(xo) ————
Tn41 0<zo<z1<...<2p<Tp41 T1...Tn

/I”“ dxy ...dz, p
g(o) . | @To-
Lni1 zo<z1<..<xp<wpp1 L1---Tn

Therefore with the notation

dry...dz,
h b) =
() //a<x1<...<zn<b L1---Tn

and x = x,,41,t = xg we have

fori(x) = 1 /095 g(t)hy, (t, z)dt.

T

Using that h,,(a, b) is the same for any permutation of z1, ..., z, and the fact that the integral
is 0 on any hyperplanes (z; = x;) we get that

n! hy(a,b) = //Sx gy Lo Em / /dxl
- (ff)n:(log(b/a»“.

Jnti(z) = 1 /OgE g(t)wdt.

T n!

Therefore

Note that if g is constant then the definition gives f,, = ¢g. This implies on one hand that we
must have 1 )
x t n
L[ ezl
z Jo n!

and on the other hand that, by replacing g by g — ¢(0), we can suppose that g(0) = 0.
Let 2 € (0,1] and € > 0 be fixed. By continuity there exists a 0 < § < z and an M such that

lg(t)] < e on [0,6] and |g(t)] < M on [0,1] . Since

o (og(w/0))"

n—o0 n!

=0

there exists an ng sucht that log(z/9))"/n! < & whenever n > ng. Then, for any n > ng, we have

@l < 3 [ a0
[t s L [ dt

T n!
< 1/ MdHl/ Medt

x Jo n! x Js
< e+ Me.

Therefore lim,, f(z) =0 = g(0).



6. Let f(2) = apz™+an_12""*+...+ a1z +ap be a polynomial with real coefficients. Prove that
if all roots of f lie in the left half-plane {z € C: Re z < 0} then

Ar0k+3 < Ak+10k+2

holds for every k =0,1,...,n — 3. (20 points)
Solution. The polynomial f is a product of linear and quadratic factors, f(z) = [[,(kiz + 1) -

H]. (pjz®+qjz+rj), with k;, l;,pj, qj,7; € R. Since all roots are in the left half-plane, for each i, k;
and [; are of the same sign, and for each j, p;,q;,r; are of the same sign, too. Hence, multiplying
f by —1 if necessary, the roots of f don’t change and f becomes the polynomial with all positive
coefficients.

For the simplicity, we extend the sequence of coefficients by an4+1 = an42 = ... = 0 and
a_1 =a_o = ... =0 and prove the same statement for —1 < k < n — 2 by induction.

For n < 2 the statement is obvious: ag41 and ag4o are positive and at least one of aj_; and
ap+s3 is 0; hence, agy1ak+2 > agagss = 0.

Now assume that n > 3 and the statement is true for all smaller values of n. Take a divisor of
f(z) which has the form 22 + pz + ¢ where p and ¢ are positive real numbers. (Such a divisor can
be obtained from a conjugate pair of roots or two real roots.) Then we can write

f(2) = (2 +pz+qQ)(byoz" 24+ ...+ b1z +by) = (2% +pz + q)g(x). (1)

The roots polynomial ¢g(z) are in the left half-plane, so we have byi1bx12 < brpbgys for all —1 <
k < n — 4. Defining b, 1 = b, = ... =0and b_; = b_o = ... = 0 as well, we also have
br+1bk+2 < bpb4s for all integer k.

Now we prove ag410k+2 > aragt+s. If k= —1 or k =n — 2 then this is obvious since a+1ak42
is positive and agak4+3 = 0. Thus, assume 0 < k < n — 3. By an easy computation,

Ap4+10k4+2 — ARAK43 =

= (qbr+1 + pbi, + bp—1)(qbry2 + Pbry1 + br) — (qbr + Pbr—1 + br—2)(qbr13 + Pbrt2 + bpt1) =
= (br—1bk — bi—2bi+1) + (b — br—2bkt2) + q(br—1bkt2 — br—2bji3)+
+0% (bbrt1 — br—1bk+2) + > (Dr41brta — bibrgs) + pa(biy — be—1bits).

We prove that all the six terms are non-negative and at least one is positive. Term p?(bpbsy1 —
bi_1bx12) is positive since 0 < k < n—3. Also terms by, _1bg — bx_2bs+1 and ¢ (by1bpro — brbri3)
are non-negative by the induction hypothesis.

To check the sign of p(b — by_oby42) consider

br—1 (b3 — b_obrs2) = by_o(bxbrr1 — bx_1brr2) + br(bg_1bx — bx_obpr1) > 0.

If b1 > 0 we can divide by it to obtain bi —br_2bk12 > 0. Otherwise, if by_1 = 0, either by_o =0
or biyo = 0 and thus bi —bg_obgyo = b% > 0. Therefore, p(b% —bp—2bk42) > 0 for all k. Similarly,
pq(b7,y — br—1brys) > 0.

The sign of q(bx—1bg42 — br—2bk43) can be checked in a similar way. Consider

brt+1(br—1br42 — bp—2br13) = br—1(brt1brt2 — bibrt3) + brys(be—1bx — bp—2br41) > 0.

If bpy1 > 0, we can divide by it. Otherwise either by_o = 0 or bx43 = 0. In all cases, we obtain
br—1bgt2 — bp_2bry3 > 0.
Now the signs of all terms are checked and the proof is complete.



