IMC2010, Blagoevgrad, Bulgaria

Day 1, July 26, 2010

Problem 1. Let 0 < a < b. Prove that
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Solution 1. Let f(z)= [ (t*+ 1)e ~dt and let g(x) = —e*"; both functions are increasing.
By Cauchy’s Mean Value Theorem, there exists a real number x € (a,b) such that

)= fla)  fx) @P+1De™ 1 1 1
o) —gla)  g@) 2ee” 2 <“ E) S
Then ,
[ @ 0e s = £0) - f@) 2 9(0) - gla) = -
Solution 2. , ,
/ 2 + le —2* > / e dr = [— e_xQ]Z —e @ — e,

Problem 2. Compute the sum of the series
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Solution 1. Let
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This power series converges for |z| < 1 and our goal is to compute F(1).
Differentiating 4 times, we get
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Since F'(0) = F'(0) = F”(0) = F"(0) = 0 and F is continuous at 1 — 0 by Abel’s continuity theorem,




integrating 4 times we get
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Remark. The computation can be shorter if we change the order of integrations.
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Solution 2. Let
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It is easy check that
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Problem 3. Define the sequence xy, xs, ... inductively by z; = V5 and Tpil = xi — 2 for each n > 1.

Compute
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Solution. Let y, = 2. Then y,11 = (y, — 2)? and y,11 — 4 = Yn(y, — 4). Since y» = 9 > 5, we have
ys = (y2 — 2)? > 5 and inductively y, > 5,n > 2. Hence, yni1 — Yo = ¥ — 5y, +4 > 4 for all n > 2, so
Yp — O0.
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Problem 4. Let a,b be two integers and suppose that n is a positive integer for which the set
Z\ {az" +by" | x,y € Z}

is finite. Prove that n = 1.

Solution. Assume that n > 1. Notice that n may be replaced by any prime divisor p of n. Moreover,
a and b should be coprime, otherwise the numbers not divisible by the greatest common divisor of a,b
cannot be represented as az™ + by™.

If p = 2, then the number of the form ax? + by? takes not all possible remainders modulo 8. If, say, b is
even, then ax? takes at most three different remainders modulo 8, by? takes at most two, hence az? + by?
takes at most 3 X 2 = 6 different remainders. If both a and b are odd, then ax? + by? = 2% £ y* (mod 4);
the expression z2 + 2 does not take the remainder 3 modulo 4 and 22 — y? does not take the remainder 2
modulo 4.

Consider the case when p > 3. The pth powers take exactly p different remainders modulo p?. Indeed,
(z + kp)?P and zP have the same remainder modulo p?, and all numbers 0P, 17, ..., (p — 1)? are different
even modulo p. So, ax? + byP take at most p? different remainders modulo p?. If it takes strictly less then
p? different remainders modulo p?, we get infinitely many non-representable numbers. If it takes exactly
p? remainders, then ax? + by? is divisible by p? only if both = and y are divisible by p. Hence if ax? + by
is divisible by p?, it is also divisible by pP. Again we get infinitely many non-representable numbers, for
example the numbers congruent to p> modulo p? are non-representable.

Problem 5. Suppose that a,b, ¢ are real numbers in the interval [—1, 1] such that
1+ 2abe > a2 + 1% + 2.

Prove that
1+ 2(abe)™ > a® + b* + ™

for all positive integers n.



Solution 1. Consider the symmetric matrix

1 a b
A=|a 1 ¢
b ¢ 1
) 1 a 10 1 ¢ . -
By the constraint we have det A > 0 and det 0 1 , det b1 , det 1 > 0. Hence A is positive
semidefinite, and A = B? for some symmetric real matrix B.
Let the rows of B be z, y, z. Then |z| =|y|=|2|=1,a=xz-y,b=y- 2z and ¢ = 2z - z, where |z| and

x -y denote the Euclidean norm and scalar product. Denote by X = ®™x, Y = Q™y, Z = ®"z the nth
tensor powers, which belong to R*". Then |[X|=|Y|=|Z|=1, XY =a", Y -Z=0"and Z - X = "

1 a™ b
So, the matrix [ a® 1 ¢" |, being the Gram matrix of three vectors in R3", is positive semidefinite, and
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its determinant, 1 + 2(abc)™ — a®* — b** — ¢*" is non-negative.

Solution 2. The constraint can be written as
(a —bc)* < (1 =05 (1 —c?). (1)
By the Cauchy-Schwarz inequality,
(an_l +a"%be+ ...+ b"_lc"_1)2 < (|a|"_1 + la|"2|be| 4 ... + |bc|"_1)2
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Multiplying by (1), we get
(a—be)*(a™ ' +a" Pbe+ ...+ 0L
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(a™ —b"c™)? < (1 —b")(1 — "),
1+ 2(abc)™ > a® + b*" + b*".



