
IMC2017, Blagoevgrad, Bulgaria

Day 2, August 3, 2017

Problem 6. Let f : [0; +∞) → R be a continuous function such that lim
x→+∞

f(x) = L exists

(it may be �nite or in�nite). Prove that

lim
n→∞

1∫
0

f(nx) dx = L.

(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution 1. Case 1: L is �nite. Take an arbitrary ε > 0. We construct a number K ≥ 0 such

that

∣∣∣∣ 1∫
0

f(nx) dx− L
∣∣∣∣ < ε.

Since lim
x→+∞

f(x) = L, there exists a K1 ≥ 0 such that
∣∣f(x) − L

∣∣ < ε
2
for every x ≥ K1.

Hence, for n ≥ K1 we have∣∣∣∣∫ 1

0

f(nx) dx− L
∣∣∣∣ =

∣∣∣∣ 1n
∫ n

0

f(x) dx− L
∣∣∣∣ =

1

n

∣∣∣∣∫ n

0

(
f − L

)∣∣∣∣ ≤
≤ 1

n

∫ n

0

|f − L| = 1

n

(∫ K1

0

|f − L|+
∫ n

K1

|f − L|
)
<

1

n

(∫ K1

0

|f − L|+
∫ n

K1

ε

2

)
=

=
1

n

∫ K1

0

|f − L|+ n−K1

n
· ε

2
<

1

n

∫ K1

0

|f − L|+ ε

2
.

If n ≥ K2 = 2
ε

∫ K1

0
|f − L| then the �rst term is at most ε

2
. Then for x ≥ K := max(K1, K2)

we have ∣∣∣∣∫ 1

0

f(nx) dx− L
∣∣∣∣ < ε

2
+
ε

2
= ε.

Case 2: L = +∞. Take an arbitrary real M ; we need a K ≥ 0 such that
1∫
0

f(nx) dx > M

for every x ≥ K.
Since lim

x→+∞
f(x) = ∞, there exists a K1 ≥ 0 such that f(x) > M + 1 for every x ≥ K1.

Hence, for n ≥ 2K1 we have∫ 1

0

f(nx) dx =
1

n

∫ n

0

f(x) dx =
1

n

∫ n

0

f =
1

n

(∫ K1

0

f +

∫ n

K1

f

)
=

=
1

n

(∫ K1

0

f +

∫ n

K1

(M + 1)

)
=

1

n

(∫ K1

0

f −K1(M + 1)

)
+M + 1.

If n ≥ K2 :=
∣∣∣∫ K1

0
f −K1(M + 1)

∣∣∣ then the �rst term is at least−1. For x ≥ K := max(K1, K2)

we have
∫ 1

0
f(nx) dx > M .

Case 3: L = −∞. We can repeat the steps in Case 2 for the function −f .
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Solution 2. Let F (x) =
∫ x
0
f . For t > 0 we have∫ 1

0

f(tx) dx =
F (t)

t
.

Since lim
t→∞

t = ∞ in the denominator and lim
t→∞

F ′(t) = lim
t→∞

f(t) = L, L'Hospital's rule proves

lim
t→∞

F (t)
t

= lim
t→∞

F ′(t)
1

= lim
t→∞

f(t)
1

= L. Then it follows that lim F (n)
n

= L.

Problem 7. Let p(x) be a nonconstant polynomial with real coe�cients. For every positive
integer n, let

qn(x) = (x+ 1)np(x) + xnp(x+ 1).

Prove that there are only �nitely many numbers n such that all roots of qn(x) are real.
(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution.

Lemma. If f(x) = amx
m + . . . + a1x + a0 is a polynomial with am 6= 0, and all roots of f

are real, then
a2m−1 − 2amam−2 ≥ 0.

Proof. Let the roots of f be w1, . . . , wn. By the Viéte-formulas,

m∑
i=1

wi = −am−1
am

,
∑
i<j

wiwj =
am−2
am

,

0 ≤
m∑
i=1

w2
i =

(
m∑
i=1

wi

)2

− 2
∑
i<j

wiwj =

(
am−1
am

)2

− 2
am−2
am

=
a2m−1 − 2amam−2

a2m
.

In view of the Lemma we focus on the asymptotic behavior of the three terms in qn(x) with
the highest degrees. Let p(x) = axk + bxk−1 + cxk−2 + . . . and qn(x) = Anx

n+k + Bnx
n+k−1 +

Cnx
n+k−2 + . . . ; then

qn(x) = (x+ 1)np(x) + xnp(x+ 1) =

=

(
xn + nxn−1 +

n(n− 1)

2
xn−2 + . . .

)
(axk + bxk−1 + cxk−2 + . . .)

+ xn
(
a

(
xk + kxk−1 +

k(k − 1)

2
xk−2 + . . .

)
+ b
(
xk−1 + (k − 1)xk−2 + . . .

)
+ c
(
xk−2 . . .

)
+ . . .

)
= 2a · xn+k +

(
(n+ k)a+ 2b

)
xn+k−1

+

(
n(n− 1) + k(k − 1)

2
a+ (n+ k − 1)b+ 2c

)
xn+k−2 + . . . ,

so

An = 2a, Bn = (n+ k)a+ 2b = Cn =
n(n− 1) + k(k − 1)

2
a+ (n+ k − 1)b+ 2c.

If n→∞ then

B2
n − 2AnCn =

(
na+O(1)

)2 − 2 · 2a
(
n2a

2
+O(n)

)
= −an2 +O(n)→ −∞,

so B2
n − 2AnCn is eventually negative, indicating that qn cannot have only real roots.
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Problem 8. De�ne the sequence A1, A2, . . . of matrices by the following recurrence:

A1 =

(
0 1
1 0

)
, An+1 =

(
An I2n
I2n An

)
(n = 1, 2, . . .)

where Im is the m×m identity matrix.
Prove that An has n+ 1 distinct integer eigenvalues λ0 < λ1 < . . . < λn with multiplicities(

n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
, respectively.

(Proposed by Snjeºana Majstorovi¢, University of J. J. Strossmayer in Osijek, Croatia)

Solution. For each n ∈ N, matrix An is symmetric 2n × 2n matrix with elements from the set
{0, 1}, so that all elements on the main diagonal are equal to zero. We can write

An = I2n−1 ⊗ A1 + An−1 ⊗ I2, (1)

where ⊗ is binary operation over the space of matrices, de�ned for arbitrary B ∈ Rn×p and
C ∈ Rm×s as

B ⊗ C :=


b11C b12C . . . b1pC
b21C b22C . . . b2pC
...

bn1C b12C . . . bnpC


nm×ps

.

Lemma 1. If B ∈ Rn×n has eigenvalues λi, i = 1, . . . , n and C ∈ Rm×m has eigenvalues µj,
j = 1, . . . ,m, then B ⊗ C has eigenvalues λiµj, i = 1, . . . , n, j = 1, . . . ,m. If B and C are
diagonalizable, then A ⊗ B has eigenvectors yi ⊗ zj, with (λi, yi) and (µj, zj) being eigenpairs
of B and C, respectively.

Proof 1. Let (λ, y) be an eigenpair of B and (µ, z) an eigenpar of C. Then

(B ⊗ C)(y ⊗ z) = By ⊗ Cz = λy ⊗ µz = λµ(y ⊗ z).

If we take (λ, y) to be an eigenpair of A1 and (µ, z) to be an eigenpair of An−1, then from (1)
and Lemma 1 we get

An(z ⊗ y) = (I2n−1 ⊗ A1 + An−1 ⊗ I2)(z ⊗ y)

= (I2n−1 ⊗ A1)(z ⊗ y) + (An−1 ⊗ I2)(z ⊗ y)

= (λ+ µ)(z ⊗ y).

So the entire spectrum of An can be obtained from eigenvalues of An−1 and A1: just sum up each
eigenvalue of An−1 with each eigenvalue of A1. Since the spectrum of A1 is σ(A1) = {−1, 1},
we get

σ(A2) = {−1 + (−1),−1 + 1, 1 + (−1), 1 + 1} = {−2, 0(2), 2}
σ(A3) = {−1 + (−2),−1 + 0,−1 + 0,−1 + 2, 1 + (−2), 1 + 0, 1 + 0, 1 + 2} = {−3, (−1)(3), 1(3), 3}
σ(A4) = {−1 + (−3),−1 + (−1(3)),−1 + 1(3),−1 + 3, 1 + (−3), 1 + (−1(3)), 1 + 1(3), 1 + 3}

= {−4, (−2)(4), 0(3), 2(4), 4}.

Inductively, An has n+ 1 distinct integer eigenvalues −n,−n+ 2,−n+ 4, . . . , n− 4, n− 2, n
with multiplicities

(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n

)
, respectively.

Problem 9. De�ne the sequence f1, f2, . . . : [0, 1)→ R of continuously di�erentiable functions
by the following recurrence:

f1 = 1; f ′n+1 = fnfn+1 on (0, 1), and fn+1(0) = 1.

Show that lim
n→∞

fn(x) exists for every x ∈ [0, 1) and determine the limit function.
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(Proposed by Tomá² Bárta, Charles University, Prague)

Solution. First of all, the sequence fn is well de�ned and it holds that

fn+1(x) = e
∫ x
0 fn(t)dt. (2)

The mapping Φ : C([0, 1))→ C([0, 1)) given by

Φ(g)(x) = e
∫ x
0 g(t)dt

is monotone, i.e. if f < g on (0, 1) then

Φ(f)(x) = e
∫ x
0 f(t)dt < e

∫ x
0 g(t)dt = Φ(g)(x)

on (0, 1). Since f2(x) = e
∫ x
0 1mathrmdt = ex > 1 = f1(x) on (0, 1), we have by induction

fn+1(x) > fn(x) for all x ∈ (0, 1), n ∈ N. Moreover, function f(x) = 1
1−x is the unique solution

to f ′ = f 2, f(0) = 1, i.e. it is the unique �xed point of Φ in {ϕ ∈ C([0, 1)) : ϕ(0) = 1}. Since
f1 < f on (0, 1), by induction we have fn+1 = Φ(fn) < Φ(f) = f for all n ∈ N. Hence, for
every x ∈ (0, 1) the sequence fn(x) is increasing and bounded, so a �nite limit exists.

Let us denote the limit g(x). We show that g(x) = f(x) = 1
1−x . Obviously, g(0) =

lim fn(0) = 1. By f1 ≡ 1 and (2), we have fn > 0 on [0, 1) for each n ∈ N, and therefore (by
(2) again) the function fn+1 is increasing. Since fn, fn+1 are positive and increasing also f ′n+1

is increasing (due to f ′n+1 = fnfn+1), hence fn+1 is convex. A pointwise limit of a sequence of
convex functions is convex, since we pass to a limit n→∞ in

fn(λx+ (1− λ)y) ≤ λfn(x) + (1− λ)fn(y)

and obtain
g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)

for any �xed x, y ∈ [0, 1) and λ ∈ (0, 1). Hence, g is convex, and therefore continuous on
(0, 1). Moreover, g is continuous in 0, since 1 ≡ f1 ≤ g ≤ f and limx→0+ f(x) = 1. By Dini's
Theorem, convergence fn → g is uniform on [0, 1− ε] for each ε ∈ (0, 1) (a monotone sequence
converging to a continuous function on a compact interval). We show that Φ is continuous and
therefore fn have to converge to a �xed point of Φ.

In fact, let us work on the space C([0, 1 − ε]) with any �xed ε ∈ (0, 1), ‖ · ‖ being the
supremum norm on [0, 1− ε]. Then for a �xed function h and ‖ϕ− h‖ < δ we have

sup
x∈[0,1−ε]

|Φ(h)(x)− Φ(ϕ)(x)| = sup
x∈[0,1−ε]

e
∫ x
0 h(t)dt

∣∣∣1− e∫ x
0 ϕ(t)−h(t)dt

∣∣∣ ≤ C(eδ − 1) < 2Cδ

for δ > 0 small enough. Hence, Φ is continuous on C([0, 1−ε]). Let us assume for contradiction
that Φ(g) 6= g. Hence, there exists η > 0 and x0 ∈ [0, 1 − ε] such that |Φ(g)(x0) − g(x0)| > η.
There exists δ > 0 such that ‖Φ(ϕ)−Φ(g)‖ < 1

3
η whenever ‖ϕ− g‖ < δ. Take n0 so large that

‖fn − g‖ < min{δ, 1
3
η} for all n ≥ n0. Hence, ‖fn+1 − Φ(g)‖ = ‖Φ(fn) − Φ(g)‖ < 1

3
η. On the

other hand, we have |fn+1(x0)−Φ(g)(x0)| > |Φ(g)(x0)−g(x0)|−|g(x0)−fn+1(x0)| > η− 1
3
η = 2

3
η,

contradiction. So, Φ(g) = g.
Since f is the only �xed point of Φ in {ϕ ∈ C([0, 1 − ε]) : ϕ(0) = 1}, we have g = f on

[0, 1− ε]. Since ε ∈ (0, 1) was arbitrary, we have limn→∞ fn(x) = 1
1−x for all x ∈ [0, 1).
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Problem 10. Let K be an equilateral triangle in the plane. Prove that for every p > 0
there exists an ε > 0 with the following property: If n is a positive integer, and T1, . . . , Tn are
non-overlapping triangles inside K such that each of them is homothetic to K with a negative
ratio, and

n∑
`=1

area(T`) > area(K)− ε,

then
n∑
`=1

perimeter(T`) > p.

(Proposed by Fedor Malyshev, Steklov Math. Inst. and Ilya Bogdanov, MIPT, Moscow)

Solution. For an arbitrary ε > 0 we will establish a lower bound for the sum of perimeters
that would tend to +∞ as ε→ +0; this solves the problem.

Rotate and scale the picture so that one of the sides of K is the segment from (0, 0) to
(0, 1), and stretch the picture horizontally in such a way that the projection of K to the x axis
is [0, 1]. Evidently, we may work with the lengths of the projections to the x or y axis instead
of the perimeters and consider their sum, that is why we may make any a�ne transformation.

Let fi(a) be the length of intersection of the straight line {x = a} with Ti and put f(a) =∑
i fi(a). Then f is piece-wise increasing with possible downward gaps, f(a) ≤ 1− a, and∫ 1

0

f(x) dx ≥ 1

2
− ε.

Let d1, . . . , dN be the values of the gaps of f . Every gap is a sum of side-lengths of some of Ti
and every Ti contributes to one of dj, we therefore estimate the sum of the gaps of f .

In the points of di�erentiability of f we have f ′(a) ≥ f(a)/a; this follows from f ′i(a) ≥
fi(a)/a after summation. Indeed, if fi is zero this inequality holds trivially, and if not then
f ′i = 1 and the inequality reads fi(a) ≤ a, which is clear from the de�nition.

Choose an integer m = b1/(8ε)c (considering ε su�ciently small). Then for all k =
0, 1, . . . , [(m − 1)/2] in the section of K by the strip k/m ≤ x ≤ (k + 1)/m the area, cov-
ered by the small triangles Ti is no smaller than 1/(2m)− ε ≥ 1/(4m). Thus∫ (k+1)/m

k/m

f ′(x) dx ≥
∫ (k+1)/m

k/m

f(x) dx

x
≥ m

k + 1

∫ (k+1)/m

k/m

f(x) dx ≥ m

k + 1
· 1

4m
=

1

4(k + 1)
.

Hence, ∫ 1/2

0

f ′(x) dx ≥ 1

4

(
1

1
+ · · ·+ 1

[(m− 1)/2]

)
.

The right hand side tends to in�nity as ε→ +0. On the other hand, the left hand side equals

f(1/2) +
∑
xi<1/2

di;

hence
∑

i di also tends to in�nity.
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