IMC 2017, Blagoevgrad, Bulgaria

Day 2, August 3, 2017

Problem 6. Let f : [0;4+00) — R be a continuous function such that 1ir+n f(x) = L exists
T—r+00

(it may be finite or infinite). Prove that
1
lim [ f(nx)dez = L.

n—r00
0

(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution 1. Case I: L is finite. Take an arbitrary € > 0. We construct a number K > 0 such

1
that | [ f(nz)dx — L‘ <e.

0
Since lir_{l f(z) = L, there exists a K; > 0 such that ’f(x)
T—r+00
Hence, for n > K; we have

/lf(nfv)dfv— ' /f )dx — L ’: )
/If L= (/ |f—L|+/Kl|f—L|)<%(/O1|f_L|+/I:§):

1 n—K 1 [
o R R e T
0 n 2 nJ 2

n

— L‘ < § for every x > K.

()<

Ifn> K, = ngKl |f — L| then the first term is at most 5. Then for x > K := max(K, K3)

we have

1
f(na:)dx—L’<%+§:€

Case 2: L = +oco. Take an arbitrary real M; we need a K > 0 such that [ f(nz)dz > M
0

for every x > K.
Since lim f(z) = oo, there exists a K; > 0 such that f(z) > M + 1 for every x > K.

T—+00
Hence, for n > 2K, we have

/me e dm_(/f_ </mf+A;)
</K1f+ K1M+1) ( f- Kl(M+1)>+M+1_

Itn> Ky := | [ f— Ki((M+ 1)) then the first term is at least —1. For z > K := max(K7, K5)

we have [ f(nz)dz > M.
Case 3: L = —oo. We can repeat the steps in Case 2 for the function —f




Solution 2. Let F(z) = [ f. For t >0 we have

/ ftr)dx = @

Since lim ¢t = oo in the denominator and thm F'(t) = lim f(t) = L, L’Hospital’s rule proves
—

t—o0
PO _ 1 ) _ thm f® — I, Then it follows that hm F(”) = L.
H

lim
t—o0 t —00 1

Problem 7. Let p(x) be a nonconstant polynomial with real coefficients. For every positive
integer n, let
gn(x) = (x 4+ 1)"p(x) + 2"p(x + 1).
Prove that there are only finitely many numbers n such that all roots of g,(x) are real.
(Proposed by Alexandr Bolbot, Novosibirsk State University)

Solution.
Lemma. If f(x) = apa™ + ...+ a1z + ag is a polynomial with a,, # 0, and all roots of f
are real, then

2
a1 — 20mQpy—2 > 0.

Proof. Let the roots of f be wy,...,w,. By the Viéte-formulas,

m
Am—1 Am—2
w; = — ) wzwj = )
- Am a
=1

m

m m 2 2
2 —1 Qm—2 o Q1 — 2amam 2
oS0t (Fu) -2 - (f) - gtecs - =
=1 = 1<J m

In view of the Lemma we focus on the asymptotic behavior of the three terms in ¢, (x) with
the highest degrees. Let p(z) = ax® + ba* ™1 + c2* 2 + ... and ¢,(z) = A2""* + B a1 4

Cpz"™ =2 + ., then
gn(x) = (x 4+ 1)"p(x) + 2"p(x + 1) =
n(n

-1
T)x”_2 +.. .)(axk + bt e L)

—1
+ 2" (a(mk+kmk_1 + %xkq —|—>

+b<azk‘1+(k—1)xk‘2+...>+c<xk‘2...>+...>

=2a- 2" + ((n+ k)a + 2b)2" !

—1)+k(k—1
—i—(n(n )—; ( >a—|—(n+k—1)b—|—2c)x”+k2+...,

= (x” +na™ 4

SO

-1+ kk—-1
A,=2a, B,=(n+k)a+2b= Cn:n(n )_2{_( )a+(n+k—1)b+20.

If n — oo then
2 2 n’a 2
B2 —2A4,C, = (na+0(1))" —2-2a 5 + O(n)) = —an” + O(n) — —oo,
so B2 —2A,,C, is eventually negative, indicating that g, cannot have only real roots.
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Problem 8. Define the sequence Aq, As, ... of matrices by the following recurrence:

0 1 A, Ipn
Al = (1 O) y An+1 = <12n jn) (TL = 1,2, .. )

where [,,, is the m x m identity matrix.
Prove that A, has n + 1 distinct integer eigenvalues \g < \; < ... < A, with multiplicities

() (1), (%), respectively.
(Proposed by Snjezana Majstorovi¢, University of J. J. Strossmayer in Osijek, Croatia)

Solution. For each n € N, matrix A,, is symmetric 2" x 2" matrix with elements from the set
{0,1}, so that all elements on the main diagonal are equal to zero. We can write

An - Ignfl ® Al + An—l ® 12, (1)

where ® is binary operation over the space of matrices, defined for arbitrary B € R™*P and
C € R™** as

an blgc . blpC
BoC - bg%O b C' ... by, C
biC' b12C ... b, C S
Lemma 1. If B € R™" has eigenvalues \;, 7 = 1,...,n and C € R™*™ has eigenvalues p;,

j =1,...,m, then B ® C has eigenvalues A\;ju;, i = 1,...,n, j =1,...,m. If B and C are
diagonalizable, then A ® B has eigenvectors y; @ z;, with (\;, y;) and (p;, 2;) being eigenpairs
of B and C, respectively.

Proof 1. Let (X, y) be an eigenpair of B and (u, z) an eigenpar of C. Then

(BRCO)y®2)=By®Cz= Ay ® uz = \Mi(y ® 2).

If we take (), y) to be an eigenpair of A; and (u, z) to be an eigenpair of A,_1, then from (1)
and Lemma 1 we get

Azey) = (I @A+ A1 ®L)(20y)
= (Ip1 @A)z @y)+ (A1 ® L) (2@ y)
= A+pwiey).

So the entire spectrum of A,, can be obtained from eigenvalues of A,,_; and A;: just sum up each
eigenvalue of A,_; with each eigenvalue of A;. Since the spectrum of A; is o(A;) = {—1,1},
we get

o(Ay) = {1+ (=1),-1+1,14+(=1),14+1}={-2,0% 2}
o(As) = {-1+(- 2),—1+0—1+0—1+2 14(=2),14+0,14+0,1+2} ={-3,(-1)®,1® 3}
o(Ay) = {1+ (- ),—1+( G, 1 4+1® 143,14 (=3), 14+ (=19),1+1® 1+ 3}

= {—4,(=2)®,0®), 21 4},

Inductively, A, has n + 1 distinct integer eigenvalues —n,—n+2,-—n+4,...,n—4,n—2,n

with multiplicities (7)), (1), (5), ..., (7), respectively.

Problem 9. Define the sequence fi, f,...:[0,1) — R of continuously differentiable functions
by the following recurrence:

fl = 1; fn+1 fnfn-i—l on (07 1)’ and fn-l—l(o) =L

Show that lim f,(z) exists for every « € [0,1) and determine the limit function.
n—o0



(Proposed by Toméas Barta, Charles University, Prague)
Solution. First of all, the sequence f,, is well defined and it holds that
fusi(x) = elo 7O, 2)
The mapping ¢ : C([0,1)) — C(]0,1)) given by
B(g)(r) = el 20
is monotone, i.e. if f < g on (0,1) then
B(f)(r) = el T < oS50 g) )

on (0,1). Since fy(z) = elo tmathrmdt — co 1 — f(2) on (0,1), we have by induction
fot1(2z) > fo(z) for all z € (0,1), n € N. Moreover, function f(z) = 1= is the unique solution
to f/ = f2, f(0) =1, i.e. it is the unique fixed point of ® in {¢ € C([0,1)) : ¢(0) = 1}. Since
fi < fon (0,1), by induction we have f, 1 = ®(f,) < ®(f) = f for all n € N. Hence, for
every z € (0,1) the sequence f,(z) is increasing and bounded, so a finite limit exists.

Let us denote the limit g(z). We show that g(x) = f(z) = ~. Obviously, g(0) =
lim f,,(0) = 1. By f; =1 and (2), we have f, > 0 on [0,1) for each n € N, and therefore (by
(2) again) the function f,,; is increasing. Since f,, f,41 are positive and increasing also f;
is increasing (due to f; ., = fufut1), hence f,4q is convex. A pointwise limit of a sequence of
convex functions is convex, since we pass to a limit n — oo in

faz + (1= Ny) < Afu(z) + (1= A) fu(y)

and obtain
g(Az + (1= Ny) < Ag(z) + (1= N)g(y)

for any fixed z, y € [0,1) and A € (0,1). Hence, g is convex, and therefore continuous on
(0,1). Moreover, g is continuous in 0, since 1 = f; < ¢g < f and lim,_,oy f(z) = 1. By Dini’s
Theorem, convergence f, — ¢ is uniform on [0, 1 — €] for each € € (0,1) (a monotone sequence
converging to a continuous function on a compact interval). We show that ® is continuous and
therefore f,, have to converge to a fixed point of ®.

In fact, let us work on the space C(]0,1 — ¢]) with any fixed ¢ € (0,1), || - || being the
supremum norm on [0, 1 — ¢|. Then for a fixed function h and ||¢ — k|| < § we have

sup | ®(h)(x) — B(p)(x)| = sup elo MO _elo v®=hOd | < O — 1) < 206

z€[0,1—¢] z€[0,1—¢]

for § > 0 small enough. Hence, ® is continuous on C(]0, 1 —¢]). Let us assume for contradiction
that ®(g) # g. Hence, there exists 7 > 0 and z¢ € [0,1 — €] such that |®(g)(x¢) — g(x0)| > 7.
There exists § > 0 such that ||®(p) — ®(g)|| < 517 whenever ||¢ — g|| < d. Take ng so large that
£ — gll < min6, n} for all n > ny. Hence, ||fusr — ®(g)]| = [B(f.) — D(g)]] < Ln. On the
other hand, we have | fi.11(z0) —®(g)(z0)| > [®(g)(x0) —g(z0)|—19(z0) — fus1(z0)| > n—31 = 30,
contradiction. So, ®(g) = g.

Since f is the only fixed point of ® in {¢ € C([0,1 —¢€]) : ¢(0) = 1}, we have g = f on
[0,1 — ¢]. Since € € (0,1) was arbitrary, we have lim,,_,o, f,,(z) = — for all z € [0, 1).

1—x



Problem 10. Let K be an equilateral triangle in the plane. Prove that for every p > 0
there exists an € > 0 with the following property: If n is a positive integer, and T1,...,T,, are
non-overlapping triangles inside K such that each of them is homothetic to K with a negative
ratio, and

Zarea(Tg) > area(K) — ¢,
=1
then

Z perimeter(7}) > p.
=1

(Proposed by Fedor Malyshev, Steklov Math. Inst. and Ilya Bogdanov, MIPT, Moscow)

Solution. For an arbitrary ¢ > 0 we will establish a lower bound for the sum of perimeters
that would tend to 400 as ¢ — +0; this solves the problem.

Rotate and scale the picture so that one of the sides of K is the segment from (0,0) to
(0,1), and stretch the picture horizontally in such a way that the projection of K to the = axis
is [0, 1]. Evidently, we may work with the lengths of the projections to the x or y axis instead
of the perimeters and consider their sum, that is why we may make any affine transformation.

Let fi(a) be the length of intersection of the straight line {x = a} with 7; and put f(a) =
> fia). Then f is piece-wise increasing with possible downward gaps, f(a) < 1 —a, and

! 1
/0 f(x)dxza—a

Let dy,...,dxy be the values of the gaps of f. Every gap is a sum of side-lengths of some of T;
and every T; contributes to one of d;, we therefore estimate the sum of the gaps of f.

In the points of differentiability of f we have f’(a) > f(a)/a; this follows from f/(a) >
fi(a)/a after summation. Indeed, if f; is zero this inequality holds trivially, and if not then
fI' =1 and the inequality reads f;(a) < a, which is clear from the definition.

Choose an integer m = |1/(8¢)] (considering e sufficiently small). Then for all £ =

0,1,...,[(m — 1)/2] in the section of K by the strip k/m < z < (k + 1)/m the area, cov-
ered by the small triangles 7; is no smaller than 1/(2m) —e > 1/(4m). Thus
(k+1)/m (k+1)/m d (k+1)/m 1 1
/ f’(x)da:Z/ flade  _m f@)yde> - Lot
Hence,
1/2

, 1/1 1
o f(‘”)dmz‘(I+"‘+[<m—1>/21)'

The right hand side tends to infinity as ¢ — +0. On the other hand, the left hand side equals

f(1/2) + Z di;

z;<1/2

hence ). d; also tends to infinity.



