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Solutions

Problem 1. Determine all pairs (a, b) ∈ C× C satisfying

|a| = |b| = 1 and a+ b+ ab ∈ R.

(proposed by Mike Daas, Universiteit Leiden)

Hint: Write a = eix and b = eiy, and transform the RHS to a product.

Solution 1. Write a = eix and b = eiy for some x, y ∈ [0, 2π). Using Euler’s formula, and the
well-known identities

sinx+ sin y = 2 sin
x+ y

2
cos

x− y

2
and sinx = 2 sin

x

2
cos

x

2
,

we get a product form of the left-hand side as

Im
(
a+ b+ ab

)
=
(
sinx+ sin y

)
+ sin(x− y)

= 2 sin
x+ y

2
cos

x− y

2
+ 2 sin

x− y

2
cos

x− y

2

= 2

(
sin

x+ y

2
+ sin

x− y

2

)
cos

x− y

2

= 4 sin
x

2
· cos y

2
· cos x− y

2
.

Hence, a+ b+ ab is real if and only if either sin x
2
= 0, cos y

2
= 0 or cos x−y

2
= 0, which respectivelly

correspond to x = 2kπ, y = (2k + 1)π and x = y + (2k + 1)π.
Therefore, the solutions are

(1, b), (a,−1) and (a,−a) with |a| = 1, |b| = 1.

Solution 2. Notice that

a+ b+ ab ∈ R ⇐⇒ 1 + a+ b+ ab ∈ R.

Let c ∈ C be such that a = c2. Now observe that

c(1 + a+ b+ ab) = c+ cc2 + cb+ cc2b

= c+ c+ cb+ cb ∈ R,

where we used that cc = 1 and z + z ∈ R for any z ∈ C. W e conclude that either c ∈ R, or
1 + a+ b+ ab = 0. In the first case, c = ±1 and so a = 1. In the second case, we factor the equation
as

(a+ b)(1 + b) = 1 + a+ 1b+ ab = 0, and as such, a = −b or b = −1.

We find precisely three families of pairs (a, b): the pairs (1, b) for b on the unit circle; the pairs (a,−1)
for a on the unit circle; and the pairs (a,−a) for a on the unit circle.
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Problem 2. For n = 1, 2, . . . let

Sn = log
(

n2√
11 · 22 · . . . · nn

)
− log(

√
n),

where log denotes the natural logarithm. Find lim
n→∞

Sn.

(proposed by Sergey Chernov, Belarusian State University, Minsk)

Hint: Sn is (close to) a Riemann sum of a certain integral.

Solution. Transform Sn as

Sn =
1

n2

n∑
k=1

k log k − 1

2
log n

=
1

n

n∑
k=1

(
k

n

(
log

k

n
+ log n

))
− 1

2
log n

=
1

n

n∑
k=1

k

n
log

k

n
+

log n

n2

n∑
k=1

k − 1

2
log n

=
1

n

n∑
k=1

k

n
log

k

n
+

log n

2n
.

Here the last term
log n

2n
converges to 0. The sum

1

n

n∑
k=1

k

n
log

k

n
is a Riemann sum for the integrable

function f(x) = x log x on the segment [0, 1] with the uniform grid

{
1

n
,
2

n
, . . . ,

n− 1

n
, 1

}
. Therefore

lim
1

n

n∑
k=1

k

n
log

k

n
= lim

1

n

n∑
k=1

f

(
k

n

)
=

∫ 1

0

x log xdx =

[
x2

2
log x− x2

4

]1
0

= −1

4
.

Hence, limSn exists, and limSn = −1

4
.
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Problem 3. For which positive integers n does there exist an n× n matrix A whose entries are all in
{0, 1}, such that A2 is the matrix of all ones?

(proposed by Alex Avdiushenko, Neapolis University Paphos, Cyprus)

Hint: Let J be the n× n matrix with all ones. Consider A3 = AJ = JA.

Solution. Answer: Such a matrix A exists if and only if n is a complete square.

Let Jn be the n× n matrix with all ones, so A2 = Jn. Consider the equality

A3 = AJn = JnA.

In the matrix AJn, all columns are equal to the sum of colums in A, that is, the (i, j)th entry in AJn
is the number of ones in the ith row of A. Similarly, the (i, j)th entry in JnA is the number of ones
in the jth column of A. These numbers must be equal, so A contains the same number of ones in
every row and every column. Let this common number be k; then AJn = JnA = kJn.

Now from
nJn = J2

n = (A2)2 = A(AJn) = A(kJn) = k(AJn) = k2Jn

we can read n = k2, so n must be a complete square.

It remains to show an example for a matrix A of order n = k2. For l = 0, 1, . . . , k − 1, let Bl

be the k × k matrix whose (i, j)th entry is 1 if j − i ≡ l (mod k) and 0 otherwise, i.e., Bl can be
obtained from the identity matrix by cyclically shifting the colums l times, and let

A =


B0 B1 B2 . . . Bk−1

B0 B1 B2 . . . Bk−1
...

...
...

. . .
...

B0 B1 B2 . . . Bk−1

 ;

The (i, j)th block in A2 is

(
B0 B1 . . . Bk−1

)Bj−1
...

Bj−1

 = (B0 +B1 + . . .+Bk−1)Bj−1 = JkBj−1 = Jk,

so this matrix indeed satisfies A2 = Jk2 .
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Problem 4. Let g and h be two distinct elements of a group G, and let n be a positive integer.
Consider a sequence w = (w1, w2, . . .) which is not eventually periodic and where each wi is either g
or h. Denote by H the subgroup of G generated by all elements of the form wkwk+1 . . . wk+n−1 with
k ≥ 1. Prove that H does not depend on the choice of the sequence w (but may depend on n).

(proposed by Ivan Mitrofanov, Saarland University)

Solution. Let Xm denote the subset of G of products of the form g1 . . . gm, where each gi is either g
or h.

Lemma. For all j = 1, 2, . . . , n and for all a, b ∈ Xj the ratio a−1b is contained in H.

Proof. Induction in j.
We start with the base case j = 1. By the pigeonhole principle, there exist k < ℓ for which the

sequences (wk+1, . . . , wk+n−1) and (wℓ+1, . . . , wℓ+n−1) coincide. If wk+m = wℓ+m for all positive integer
m, then the sequence w is eventually periodic with period ℓ− k. Thus, there exists m > 0 for which
wk+m ̸= wℓ+m. We have m ⩾ n, so wk+m−i = wℓ+m−i for i = 1, 2, . . . , n − 1. Therefore, since the
products x = wk+m−n+1 . . . wk+m and y = wℓ+m−n+1 . . . wℓ+m both are elements of H, the subgroup
H contains their ratios x−1y and y−1x. These ratios are equal to g−1h and h−1g (in some order), that
finishes the proof for j = 1.

Induction step from j − 1 to j, 2 ⩽ j ⩽ n. We say that an element a ∈ Xj is a g-element,
correspondingly an h-element, if it can be represented as a = ga1, correspondingly a = ha1, where
a1 ∈ Xj−1. The ratio of two g-elements, or of two h-elements, is a ratio of two elements of Xj−1, thus,
it is in H by the induction hypothesis. Since the property a−1b ∈ H is an equivalence relation on
pairs (a, b), it suffices to find a g-element and h-element whose ratio is in H.

Define k, ℓ,m, as in the base case. The subgroup H contains the products

v = wk+m−n+j . . . wk+mwk+m+1 . . . wk+m+j−1,

u = wℓ+m−n+j . . . wℓ+mwℓ+m+1 . . . wℓ+m+j−1.

Their ratio u−1v is a ratio of g-element and an h-element in Xj, since {wk+m, wℓ+m} = {g, h} and
wk+m−i = wℓ+m−i for all i = 1, 2, . . . , n− j.

The Lemma for j = n yields that H is the subgroup of G generated by Xn, and this description
does not depend on w.
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Problem 5. Let n > d be positive integers. Choose n independent, uniformly distributed random
points x1, . . . , xn in the unit ball B ⊂ Rd centered at the origin. For a point p ∈ B denote by f(p)
the probability that the convex hull of x1, . . . , xn contains p. Prove that if p, q ∈ B and the distance
of p from the origin is smaller than the distance of q from the origin, then f(p) ≥ f(q).

(proposed by Fedor Petrov, St Petersburg State University)

Solution. By radial symmetry of the distribution, f(p) depends only on |op| (the distance between
o and p), so, we may assume that p lies on the segment between o and q. For points x1, . . . , xn

and x ∈ B denote by fx(x1, . . . , xn) the indicator function of the event “x is in the convex hull of
x1, . . . , xn”. The claim follows from the following deterministic inequality∑

fp(±x1, . . . ,±xn) ⩾
∑

fq(±x1, . . . ,±xn), (1)

where x1, . . . , xn ∈ B are arbitrary points in general position and the summations are over all 2n choices
of signs (here o is identified with the origin, that is, x and −x are symmetric with respect to o). Indeed,
taking the expectation in (1) over independent random uniform x1, . . . , xn, we get 2nf(p) ⩾ 2nf(q).
(To be specific, here “general position” means that for any point set A ⊂ {±x1, . . . ,±xn, p, q}, which
does not contain simultaneosuly xi and −xi, is not contained in an (affine) (|A| − 2)-dimensional
plane. This holds with probability 1.)

To prove (1), we use the following formula for the characteristic function χP of the convex
polyhedron P ⊂ Rd: if P1, . . . , Pk are all facets of P , and Qi is the convex hull of o and Pi, then
χP =

∑
±χQi

, where the sign is plus if o and P are on the same side of Pi, and minus otherwise.
Indeed, for every point p in general position look how the ray op intersects the boundary of P and
realize that for at most two summands the contribution of the RHS at point p is non-zero, and the
total contribution equals 1 when p is inside P and 0 (possibly as 0 = 1 − 1) otherwise. Use this
formula for every polyhedron P with n vertices y1, . . . , yn, where each yi is ±xi. These polyhedrons
are simplicial (all facets are simplices) because of the general position condition. Sum up over all 2n

such P , we get the expression of
∑

P χP as a linear combination of χS, where S are simplices formed
by o and some d points in {±x1, . . . ,±xn} (not containing xi and −xi simultaneously).

For proving (1), it suffices to verify that all coefficients of χS in this linear combination are positive
(since two sides of (1) are the values of the sum

∑
P χP at p and q). Let’s find a coefficient of χS,

where, say, S is a simplex with vertices o, x1, . . . , xd. The plane α through x1, . . . , xd partitions Rd

onto two parts H+ (containing o) and H− (not containing o). For every pair {xi,−xi} with i > d,
either both points belong to H+, or one belongs to H− and another to H+. χS goes with the plus
sign for P with vertices x1, . . . , xd and other vertices from H+, and with the minus sign for P with
vertices x1, . . . , xd and other vertices from H−. It is immediate that there are at least as many pluses
as minuses.
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