IMC 2024

Second Day, August 8, 2024

Problem 6. Prove that for any function $f : \mathbb{Q} \to \mathbb{Z}$, there exist $a, b, c \in \mathbb{Q}$ such that a < b < c, $f(b) \ge f(a)$, and $f(b) \ge f(c)$.

(10 points)

Problem 7. Let *n* be a positive integer. Suppose that *A* and *B* are invertible $n \times n$ matrices with complex entries such that A + B = I (where *I* is the identity matrix) and

$$(A^2 + B^2)(A^4 + B^4) = A^5 + B^5$$

Find all possible values of det(AB) for the given n.

(10 points)

Problem 8. Define the sequence x_1, x_2, \ldots by the initial terms $x_1 = 2, x_2 = 4$, and the recurrence relation

$$x_{n+2} = 3x_{n+1} - 2x_n + \frac{2^n}{x_n}$$
 for $n \ge 1$.

Prove that $\lim_{n \to \infty} \frac{x_n}{2^n}$ exists and satisfies

$$\frac{1+\sqrt{3}}{2} \le \lim_{n \to \infty} \frac{x_n}{2^n} \le \frac{3}{2}.$$
(10 points)

Problem 9. A matrix $A = (a_{ij})$ is called *nice*, if it has the following properties:

- (i) the set of all entries of A is $\{1, 2, ..., 2t\}$ for some integer t;
- (ii) the entries are non-decreasing in every row and in every column: $a_{i,j} \leq a_{i,j+1}$ and $a_{i,j} \leq a_{i+1,j}$;
- (iii) equal entries can appear only in the same row or the same column: if $a_{i,j} = a_{k,\ell}$, then either i = k or $j = \ell$;

(iv) for each s = 1, 2, ..., 2t - 1, there exist $i \neq k$ and $j \neq \ell$ such that $a_{i,j} = s$ and $a_{k,\ell} = s + 1$. Prove that for any positive integers m and n, the number of nice $m \times n$ matrices is even.

For example, the only two nice 2×3 matrices are $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 & 3 \\ 2 & 4 & 4 \end{pmatrix}$. (10 points)

Problem 10. We say that a square-free positive integer n is almost prime if

$$n \mid x^{d_1} + x^{d_2} + \dots + x^{d_k} - kx$$

for all integers x, where $1 = d_1 < d_2 < ... < d_k = n$ are all the positive divisors of n. Suppose that r is a Fermat prime (i.e. it is a prime of the form $2^{2^m} + 1$ for an integer $m \ge 0$), p is a prime divisor of an almost prime integer n, and $p \equiv 1 \pmod{r}$. Show that, with the above notation, $d_i \equiv 1 \pmod{r}$ for all $1 \le i \le k$.

(An integer n is called square-free if it is not divisible by d^2 for any integer d > 1.)

(10 points)

After the end of contest, the solutions and preliminary results will be posted at https://imc-math.org.uk/?year=2024&item=problems and https://imc-math.org.uk/?year=2024&item=results.