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Second Day, August 8, 2024

Solutions

Problem 6. Prove that for any function f: Q — Z, there exist a,b,c¢ € Q such that a < b < ¢,
f(b) > f(a), and f(b) > f(c).
(proposed by Mehdi Golafshan & Markus A. Whiteland, University of Liege, Liege)

Solution 1. We can replace f(z) by the function g(z) = f(1 — z), so without loss of generality we
can assume f(0) < f(1).

If f(1) > f(2) then we can choose (a,b,c) = (0,1,2). Otherwise we have f(0) < f(1) < f(2).

If there is some = € (1,2) such that f(x) > f(2) then we can chose (a,b,c) = (1, z,2); similarly, if
there is some = € (1,2) with f(z) < f(1) then choose (a,b,c) = (0,1,2). Hence, in the remaining
cases we have f(1) < f(x) < f(2) for all z € (1, 2).

Now f is bonded on the interval [1,2], so it has only finitely many values on this interval. Since
there are infintely many rational numbers in [0, 1], there is a value y that is attained infinitely many
times. The we can choose 1 < a < b < ¢ < 2 such that f(a) = f(b) = f(c) = y.

Solution 2. Assume towards a contradiction that there is a function f which does not satisfy the
claim: for all rationals a, b, ¢ with a < b < ¢ we have f(b) < f(a) or f(b) < f(c).

Let x and y be arbitrary rationals with © < y. Let I(x,y) = [z,y] N Q. We first observe that
inf f(I(x,y)) = —oo. Indeed, if the infimum was finite, then, as the set f(/(z,y)) is bounded
(sup f(I(x,y)) = max{f(z), f(y)}) and thus finite, there are three points having the same value under
f, which leads to a contradiction regarding our assumption on f.

So, going back to the question at hand, let x, b, y be arbitrary rationals with z < b < y. Applying
the above observation to the set I(x,b), there exists a point a € I(z,b) such that f(a) < f(b).
Similarly, there exists a point ¢ € I(b,y) such that f(c) < f(b). Hence we have the points a, b, ¢ with
a <b<cand f(b) > max{f(a), f(c)}, which contradicts our assumption on f.



Problem 7. Let n be a positive integer. Suppose that A and B are invertible n x n matrices with
complex entries such that A+ B = I (where [ is the identity matrix) and

(A% + B®))(A* + BY) = A + B°.

Find all possible values of det(AB) for the given n.
(proposed by Sergey Bondarev, Sergey Chernov, Belarusian State University, Minsk)

Hint: Find a polynomial p(z) such that p(AB) = 0.

Solution 1. Notice first that AB = A(I — A) = A— A* = (I — A)A = BA, so A and B commute.
Let C' = AB = BA,; then

A*+ B*=(A+ B)?-2AB=1-2C,
A'+ B'=(A+ B)' —4AB(A+ B)* +2A’B? = ] — 4C + 2C?,
AP+ B® = (A+ B)® —5AB(A+ B)* + 5A?B*(A+ B) = I — 5C + 5C?,

SO

0= (A% + B%) — (A* + B} (A* + B*) = (I — 5C + 5C?) — (I — 2C)(I — 4C + 2C?)
=4C* —5C? + C =4C(C - I)(C - 11);

since C' is invertible, we have

(C—I)(C=1I)=0.

Hence, the polynomial p(z) = (z — 1)(z — ;) annihilates the matrix C = AB and therefore all

eigenvalues of C' are roots of p(x), so the possible eigenvalues are 1 and i. The determinant is the
product of the n eigenvalues, so

det(AB) =det C € {13, %, ..., }.
Now show that these values are indeed possible.
If
A:diag(%,...,%,e”/:g,...,em/3> and B :diag(%,...,%,67”/3,...,6*”/3»
X 2 %,k_/ X - S\ Vk
k n— n—

then A+ B =1, AB:diag<}l,...,%,1,---,1> anddet(AB):Zlik.
—_— —
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Problem 8. Define the sequence x, xo, ... by the initial terms x; = 2, x5 = 4, and the recurrence

relation
n

Tpio = 3Tpy1 — 2@, + - for n > 1.
n
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Prove that lim == exists and satisfies
n—oo 21
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(proposed by Karen Keryan, Yerevan State University & American University of Armenia, Armenia)
Hint: Prove that 2z, < 2,41 < 2z, +n.

Solution. Let’s prove by induction that x,.; > 2x,. It holds for n = 1. Assume it holds for n.
Then by the induction hypothesis we have that z,, > 2z,_; > ... > 2""!2; > 0 and

Tpio = 2Tpq1 + (Tpy1 — 20,) + — > 2x041.

Similarly we prove that x, .1 < 2z, + n. Again it holds for n = 1. Assume that the inequality holds
for n. Then using that x,, > 2™ and the induction hypothesis we obtain
Tpro < 3Tpy1 — 20, + 1 <2201 + 22, +n) — 22, + 1 =22, 1 +n+ 1.

X .
Using the previous inequalities we obtain that the sequence y,, = 2—: is increasing and y,11 <

. € .
yn—i—%g...gyl—l—zzzuﬁk<oo,thus7gi)1£10yn:2—Z:ceX1sts.

The recurrence relation has the following form for y,,:

4yn+2 - 2yn+1 = 4yn+1 - 2yn +

By summing up the above equality for n = 1,...,m we obtain
4ym+2—2ym+1:4y2—2y1+i ! :2+i ! - (1)
n=1 2n - Yn n=1 2n - Yn

Now using the facts that y; = 1, y,, increases and lim,,_., 4, = ¢ we obtain 1 < v, < c¢. Hence

S i 2n%yn =L
n=1

[

Thus we get from (1)

, = 1 1
2= i s =2 =2+ Y € (2],

So we have 2¢2 > 2¢ + 1 and 2¢ < 3. Recall that ¢ > 1. Therefore 1 + /3 < 2¢ < 3, which finishes
the proof.



Problem 9. A matrix A = (a;;) is called nice, if it has the following properties:
(i) the set of all entries of A is {1,2,...,2t} for some integer t;

(ii) the entries are non-decreasing in every row and in every column: a;; < a; ;11 and a;; < Giy15;

(iii) equal entries can appear only in the same row or the same column: if a;; = ay, then either
i=korj=1{
(iv) for each s =1,2,...,2t — 1, there exist i # k and j # ¢ such that a;; = s and a;, = s + 1.
Prove that for any positive integers m and n, the number of nice m x n matrices is even.

. . 111 11 3
For example, the only two nice 2 x 3 matrices are (2 9 2) and <2 A 4).

(proposed by Fedor Petrov, St Petersburg State University)

Solution. Define a standard Young tableaux of shape m X n as an m x n matrix with the set of
entries {1,2,...,mn}, increasing in every row and in every column as in (ii).

Call two standard Young tableaux Yi,Y5 friends, if they differ by a switch of two consecutive
numbers z,xr + 1 (the places of x and x + 1 must be not neighbouring, for such a switch preserving
the monotonicity in rows and columns).

For a nice m x n matrix A we construct a standard Young tableaux Y, of shape m x n as follows:
if A has n; entries equal toi (¢ = 1,2,...,2t), we replace them by the numbers from ny+...+n;_1+1
to ny + ... 4+ n; preserving monotonicity.

Note that our Y, has exactly 2t — 1 friends, where 2t is the number of distinct entries in A, and
moreover, every standard Young tableaux with odd number of friends corresponds to a unique nice
matrix. It remains to apply the handshaking lemma (i.e., the sum of the degrees equals twice the
number of edges in this graph).



Problem 10. We say that a square-free positive integer n is almost prime if
n|a® 422 4 4 a® — ka

for all integers z, where 1 = d; < dy < ... < dp = n are all the positive divisors of n. Suppose that r
is a Fermat prime (i.e. it is a prime of the form 22" + 1 for an integer m > 0), p is a prime divisor of
an almost prime integer n, and p = 1 (mod r). Show that, with the above notation, d; =1 (mod r)
forall 1 <i<k.

(An integer n is called square-free if it is not divisible by d? for any integer d > 1.)
(proposed by Tigran Hakobyan, Yerevan State University, Vanadzor, Armenia)

Solution. We first prove the following claims.

Lemma 1. If n is almost prime then ged(n, ¢(n)) = 1.

Proof. Assume to the contrary that ged(n, ¢(n)) > 1 so that there are primes p and ¢ dividing n such
that p = 1(mod ¢q). For 0 < i < p— 2 let h; be the number of positive divisors of n congruent to i
modulo p—1 and similarly for 0 < j < ¢g—1 let v; denote the number of positive divisors of n congruent

to 7 modulo q. Observe that the polynomial F,(x) = 2% + 2% + ...+ 2% — kz defines the zero function
on I, due to the condition of the problem. On the other hand, F,(x) = (hy —k)x + 3, hiz' in Fy[z],
so that p|h; for all 0 <i < p— 2,4 # 1. It follows that 2°W~1 = yy = hg + hy + hyy + ... = 0(mod p)
which is a contradiction (here w(n) means the number of distinct prime divisors of n). Therefore our
assumption was wrong and the lemma is proved. O

Lemma 2. Let q be a prime number and let h be a positive integer coprime to ¢ — 1. If [ is the order
of h modulo ¢ — 1, then there exists a € [F, such that a" = a and

a—a"+a’ — .. + (—1)1_10th71 #0

Proof. Observe that a" = a for any a € F, since ¢ — 1|k — 1. On the other hand, the numbers
RO, Y, ..., h'=1 leave different remainders upon division by ¢ — 1 and therefore the polynomial

fl@)=z—a"+2" -+ (=)

defines a function on F,, which is not identically zero. Hence the existence of an element with the
required properties is proved. O

Lemma 3. If n is almost prime then for any primes p and ¢ dividing n, the order of p modulo ¢ — 1
is an odd number.

Proof. Observe that due to Lemma 1 the order [ of p modulo ¢ — 1 is well defined and assume to the
contrary that [ is an even number. According to Lemma 2 there exists a € F, such that a? = a and
fla) # 0, where f(z) =2z — 2P + 27" — ...+ (=1)""'2P'"". Let us consider the sequence (a;)\_, C F,
defined by ag = a and a;4; = —a? for 0 < i <[ — 1. Notice that since [ is even by the assumption, we
have ¢; = agl = ag. It follows that

-1 -1 -1
d d d d d

E E ai:E g al-—l—g al :E E <ai+1+a§>:0,

i=0 dn =0 \ d2 d|z i=0 d|2

since d is always odd being a divisor of n (Recall that ged(n,¢(n)) = 1 due to Lemma 1, so that
n is odd, except the trivial case n = 2), and a;.; = —a? for all 0 < ¢ <[ — 1. On the other hand,
according to the condition of the problem, ) din ad = ka; in F, for all i, which shows that

-1 -1 -1
kf(a) = kZai = Zkai = ZZ(L? =0
i=0 =0

=0 d|n

b}



in F, which is impossible, since f(a) # 0 by construction and k = 2¢(M)=1 ig coprime to ¢q. The
attained contradiction shows that our assumption was wrong and concludes the proof of the lemma.
O

Let us get back to the problem. Suppose that p|n is prime and r = 22" +1 is a Fermat’s prime such
that p = 1(mod r). If ¢ is any prime divisor of n, then by Lemma 3 we have that ¢' = 1(mod p — 1)
for some odd [, so that ¢' = 1(mod ) and therefore ¢ = ¢&°4""=1) = 1(mod r). Hence d = 1(mod r)
for any divisor d of n. O



