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Solutions

Problem 6. Prove that for any function f : Q → Z, there exist a, b, c ∈ Q such that a < b < c,
f(b) ≥ f(a), and f(b) ≥ f(c).

(proposed by Mehdi Golafshan & Markus A. Whiteland, University of Liège, Liège)

Solution 1. We can replace f(x) by the function g(x) = f(1− x), so without loss of generality we
can assume f(0) ≤ f(1).

If f(1) ≥ f(2) then we can choose (a, b, c) = (0, 1, 2). Otherwise we have f(0) ≤ f(1) < f(2).
If there is some x ∈ (1, 2) such that f(x) ≥ f(2) then we can chose (a, b, c) = (1, x, 2); similarly, if

there is some x ∈ (1, 2) with f(x) ≤ f(1) then choose (a, b, c) = (0, 1, x). Hence, in the remaining
cases we have f(1) ≤ f(x) ≤ f(2) for all x ∈ (1, 2).

Now f is bonded on the interval [1, 2], so it has only finitely many values on this interval. Since
there are infintely many rational numbers in [0, 1], there is a value y that is attained infinitely many
times. The we can choose 1 ≤ a < b < c ≤ 2 such that f(a) = f(b) = f(c) = y.

Solution 2. Assume towards a contradiction that there is a function f which does not satisfy the
claim: for all rationals a, b, c with a < b < c we have f(b) < f(a) or f(b) < f(c).

Let x and y be arbitrary rationals with x < y. Let I(x, y) = [x, y] ∩ Q. We first observe that
inf f(I(x, y)) = −∞. Indeed, if the infimum was finite, then, as the set f(I(x, y)) is bounded
(sup f(I(x, y)) = max{f(x), f(y)}) and thus finite, there are three points having the same value under
f , which leads to a contradiction regarding our assumption on f .

So, going back to the question at hand, let x, b, y be arbitrary rationals with x < b < y. Applying
the above observation to the set I(x, b), there exists a point a ∈ I(x, b) such that f(a) < f(b).
Similarly, there exists a point c ∈ I(b, y) such that f(c) < f(b). Hence we have the points a, b, c with
a < b < c and f(b) > max{f(a), f(c)}, which contradicts our assumption on f .
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Problem 7. Let n be a positive integer. Suppose that A and B are invertible n× n matrices with
complex entries such that A+B = I (where I is the identity matrix) and

(A2 +B2)(A4 +B4) = A5 +B5.

Find all possible values of det(AB) for the given n.

(proposed by Sergey Bondarev, Sergey Chernov, Belarusian State University, Minsk)

Hint: Find a polynomial p(x) such that p(AB) = 0.

Solution 1. Notice first that AB = A(I − A) = A− A2 = (I − A)A = BA, so A and B commute.
Let C = AB = BA; then

A2 +B2 = (A+B)2 − 2AB = I − 2C,

A4 +B4 = (A+B)4 − 4AB(A+B)2 + 2A2B2 = I − 4C + 2C2,

A5 +B5 = (A+B)5 − 5AB(A+B)3 + 5A2B2(A+B) = I − 5C + 5C2,

so

0 = (A5 +B5)− (A2 +B2)(A4 +B4) = (I − 5C + 5C2)− (I − 2C)(I − 4C + 2C2)

= 4C3 − 5C2 + C = 4C(C − I)(C − 1
4
I);

since C is invertible, we have
(C − I)(C − 1

4
I) = 0.

Hence, the polynomial p(x) = (x − 1)(x − 1
4
) annihilates the matrix C = AB and therefore all

eigenvalues of C are roots of p(x), so the possible eigenvalues are 1 and 1
4
. The determinant is the

product of the n eigenvalues, so

det(AB) = detC ∈
{
1, 1

4
, 1
42
, . . . , 1

4n

}
.

Now show that these values are indeed possible.
If

A = diag
(

1
2
, . . . , 1

2︸ ︷︷ ︸
k

, eiπ/3, . . . , eiπ/3︸ ︷︷ ︸
n−k

)
and B = diag

(
1
2
, . . . , 1

2︸ ︷︷ ︸
k

, e−iπ/3, . . . , e−iπ/3︸ ︷︷ ︸
n−k

)
,

then A+B = I, AB = diag
(

1
4
, . . . , 1

4︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
n−k

)
and det(AB) = 1

4k
.

2



Problem 8. Define the sequence x1, x2, . . . by the initial terms x1 = 2, x2 = 4, and the recurrence
relation

xn+2 = 3xn+1 − 2xn +
2n

xn

for n ≥ 1.

Prove that lim
n→∞

xn

2n
exists and satisfies

1 +
√
3

2
≤ lim

n→∞

xn

2n
≤ 3

2
.

(proposed by Karen Keryan, Yerevan State University & American University of Armenia, Armenia)

Hint: Prove that 2xn ≤ xn+1 ≤ 2xn + n.

Solution. Let’s prove by induction that xn+1 ≥ 2xn. It holds for n = 1. Assume it holds for n.
Then by the induction hypothesis we have that xn ≥ 2xn−1 ≥ . . . ≥ 2n−1x1 > 0 and

xn+2 = 2xn+1 + (xn+1 − 2xn) +
2n

xn

> 2xn+1.

Similarly we prove that xn+1 ≤ 2xn + n. Again it holds for n = 1. Assume that the inequality holds
for n. Then using that xn ≥ 2n and the induction hypothesis we obtain

xn+2 ≤ 3xn+1 − 2xn + 1 ≤ 2xn+1 + (2xn + n)− 2xn + 1 = 2xn+1 + n+ 1.

Using the previous inequalities we obtain that the sequence yn =
xn

2n
is increasing and yn+1 ≤

yn +
n
2n

≤ . . . ≤ y1 +
∑n

k=1
k
2k

< ∞, thus lim
n→∞

yn =
xn

2n
= c exists.

The recurrence relation has the following form for yn:

4yn+2 − 2yn+1 = 4yn+1 − 2yn +
1

2n · yn
.

By summing up the above equality for n = 1, . . . ,m we obtain

4ym+2 − 2ym+1 = 4y2 − 2y1 +
m∑

n=1

1

2n · yn
= 2 +

m∑
n=1

1

2n · yn
. (1)

Now using the facts that y1 = 1, yn increases and limn→∞ yn = c we obtain 1 ≤ yn ≤ c. Hence

1

c
≤

∞∑
n=1

1

2n · yn
≤ 1.

Thus we get from (1)

2c = lim
m→∞

(4ym+2 − 2ym+1) = 2 +
∞∑
n=1

1

2n · yn
∈
[
2 +

1

c
, 3

]
.

So we have 2c2 ≥ 2c+ 1 and 2c ≤ 3. Recall that c ≥ 1. Therefore 1 +
√
3 ≤ 2c ≤ 3, which finishes

the proof.

3



Problem 9. A matrix A = (aij) is called nice, if it has the following properties:

(i) the set of all entries of A is {1, 2, . . . , 2t} for some integer t;

(ii) the entries are non-decreasing in every row and in every column: ai,j ≤ ai,j+1 and ai,j ≤ ai+1,j;

(iii) equal entries can appear only in the same row or the same column: if ai,j = ak,ℓ, then either
i = k or j = ℓ;

(iv) for each s = 1, 2, . . . , 2t− 1, there exist i ̸= k and j ̸= ℓ such that ai,j = s and ak,ℓ = s+ 1.

Prove that for any positive integers m and n, the number of nice m× n matrices is even.

For example, the only two nice 2× 3 matrices are

(
1 1 1
2 2 2

)
and

(
1 1 3
2 4 4

)
.

(proposed by Fedor Petrov, St Petersburg State University)

Solution. Define a standard Young tableaux of shape m × n as an m × n matrix with the set of
entries {1, 2, . . . ,mn}, increasing in every row and in every column as in (ii).

Call two standard Young tableaux Y1, Y2 friends, if they differ by a switch of two consecutive
numbers x, x+ 1 (the places of x and x+ 1 must be not neighbouring, for such a switch preserving
the monotonicity in rows and columns).

For a nice m× n matrix A we construct a standard Young tableaux YA of shape m× n as follows:
if A has ni entries equal to i (i = 1, 2, . . . , 2t), we replace them by the numbers from n1+ . . .+ni−1+1
to n1 + . . .+ ni preserving monotonicity.

Note that our YA has exactly 2t− 1 friends, where 2t is the number of distinct entries in A, and
moreover, every standard Young tableaux with odd number of friends corresponds to a unique nice
matrix. It remains to apply the handshaking lemma (i.e., the sum of the degrees equals twice the
number of edges in this graph).
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Problem 10. We say that a square-free positive integer n is almost prime if

n | xd1 + xd2 + ...+ xdk − kx

for all integers x, where 1 = d1 < d2 < ... < dk = n are all the positive divisors of n. Suppose that r
is a Fermat prime (i.e. it is a prime of the form 22

m
+ 1 for an integer m ≥ 0), p is a prime divisor of

an almost prime integer n, and p ≡ 1 (mod r). Show that, with the above notation, di ≡ 1 (mod r)
for all 1 ≤ i ≤ k.

(An integer n is called square-free if it is not divisible by d2 for any integer d > 1.)

(proposed by Tigran Hakobyan, Yerevan State University, Vanadzor, Armenia)

Solution. We first prove the following claims.

Lemma 1. If n is almost prime then gcd(n, φ(n)) = 1.

Proof. Assume to the contrary that gcd(n, φ(n)) > 1 so that there are primes p and q dividing n such
that p ≡ 1(mod q). For 0 ≤ i ≤ p− 2 let hi be the number of positive divisors of n congruent to i
modulo p−1 and similarly for 0 ≤ j ≤ q−1 let νj denote the number of positive divisors of n congruent
to j modulo q. Observe that the polynomial Fn(x) = xd1 +xd2 + ...+xdk −kx defines the zero function
on Fp due to the condition of the problem. On the other hand, Fn(x) = (h1−k)x+

∑
i ̸=1 hix

i in Fp[x],

so that p|hi for all 0 ≤ i ≤ p− 2, i ≠ 1. It follows that 2ω(n)−1 = ν0 = h0 + hq + h2q + ... ≡ 0(mod p)
which is a contradiction (here ω(n) means the number of distinct prime divisors of n). Therefore our
assumption was wrong and the lemma is proved. 2

Lemma 2. Let q be a prime number and let h be a positive integer coprime to q − 1. If l is the order
of h modulo q − 1, then there exists a ∈ Fq such that ah

l
= a and

a− ah + ah
2 − ...+ (−1)l−1ah

l−1 ̸= 0

Proof. Observe that ah
l
= a for any a ∈ Fq since q − 1|hl − 1. On the other hand, the numbers

h0, h1, ..., hl−1 leave different remainders upon division by q − 1 and therefore the polynomial

f(x) = x− xh + xh2 − ...+ (−1)l−1xhl−1

defines a function on Fq, which is not identically zero. Hence the existence of an element with the
required properties is proved. 2

Lemma 3. If n is almost prime then for any primes p and q dividing n, the order of p modulo q − 1
is an odd number.

Proof. Observe that due to Lemma 1 the order l of p modulo q − 1 is well defined and assume to the
contrary that l is an even number. According to Lemma 2 there exists a ∈ Fq such that ap

l
= a and

f(a) ̸= 0, where f(x) = x− xp + xp2 − ...+ (−1)l−1xpl−1
. Let us consider the sequence (ai)

l
i=0 ⊂ Fq

defined by a0 = a and ai+1 = −api for 0 ≤ i ≤ l− 1. Notice that since l is even by the assumption, we

have al = ap
l

0 = a0. It follows that

l−1∑
i=0

∑
d|n

adi =
l−1∑
i=0

∑
d|n

p

adi +
∑
d|n

p

apdi

 =
l−1∑
i=0

∑
d|n

p

(
adi+1 + apdi

)
= 0,

since d is always odd being a divisor of n (Recall that gcd(n, φ(n)) = 1 due to Lemma 1, so that
n is odd, except the trivial case n = 2), and ai+1 = −api for all 0 ≤ i ≤ l − 1. On the other hand,
according to the condition of the problem,

∑
d|n a

d
i = kai in Fq for all i, which shows that

kf(a) = k
l−1∑
i=0

ai =
l−1∑
i=0

kai =
l−1∑
i=0

∑
d|n

adi = 0
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in Fq which is impossible, since f(a) ̸= 0 by construction and k = 2ω(n)−1 is coprime to q. The
attained contradiction shows that our assumption was wrong and concludes the proof of the lemma.
2

Let us get back to the problem. Suppose that p|n is prime and r = 22
m
+1 is a Fermat’s prime such

that p ≡ 1(mod r). If q is any prime divisor of n, then by Lemma 3 we have that ql ≡ 1(mod p− 1)
for some odd l, so that ql ≡ 1(mod r) and therefore q = qgcd(l,r−1) ≡ 1(mod r). Hence d ≡ 1(mod r)
for any divisor d of n. 2
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