| |||||||||||
IMC2018: Day 1, Problem 1Problem 1. Let \(\displaystyle (a_n)_{n=1}^{\infty}\) and \(\displaystyle (b_n)_{n=1}^{\infty}\) be two sequences of positive numbers. Show that the following statements are equivalent: (1) There is a sequence \(\displaystyle (c_n)_{n=1}^{\infty}\) of positive numbers such that \(\displaystyle \displaystyle\sum\limits_{n=1}^{\infty} \dfrac{a_n}{c_n}\) and \(\displaystyle \displaystyle\sum\limits_{n=1}^{\infty} \dfrac{c_n}{b_n}\) both converge; (2) \(\displaystyle \displaystyle\sum\limits_{n=1}^{\infty} \sqrt{\dfrac{a_n}{b_n}}\) converges. (Proposed by Tomáš Bárta, Charles University, Prague) | |||||||||||
© IMC |