| |||||||||
IMC2019: Day 1, Problem 3Problem 3. Let \(\displaystyle f:(-1,1)\to\RR\) be a twice differentiable function such that \(\displaystyle {2f'(x)+xf''(x)\geq1} \quad\text{for \(\displaystyle x\in(-1,1)\)}. \) Prove that \(\displaystyle \int_{-1}^1xf(x)\,\mathrm{d}x\geq\frac{1}{3}. \) Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan and Karim Rakhimov, Scuola Normale Superiore and National University of Uzbekistan Hint: \(\displaystyle 2f'(x)+xf''(x)\) is the second derivative of a certain function. | |||||||||
© IMC |