| |||||||||||||
IMC2021: Day 2, Problem 5Problem 5. Let \(\displaystyle A\) be a real \(\displaystyle n\times n\) matrix and suppose that for every positive integer \(\displaystyle m\) there exists a real symmetric matrix \(\displaystyle B\) such that \(\displaystyle 2021B=A^m+B^2.\) Prove that \(\displaystyle |\det{A}|\le 1\). Rafael Filipe dos Santos, Instituto Militar de Engenharia, Rio de Janeiro Hint: The determinant is the product of the eigenvalues. | |||||||||||||
© IMC |