Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

International Mathematics Competition
for University Students
2024

Select Year:


IMC 2025
Information
  Schedule
  Problems & Solutions
  Results
  Contact
 

IMC2024: Day 2, Problem 8

Problem 8. Define the sequence x1,x2, by the initial terms x1=2, x2=4, and the recurrence relation

xn+2=3xn+12xn+2nxnfor n1.

Prove that lim exists and satisfies

\displaystyle \frac{1+\sqrt{3}}{2}\leq\lim\limits_{n \to \infty}\dfrac{x_n}{2^ n}\leq\frac{3}{2}.

Karen Keryan, Yerevan State University & American University of Armenia, Armenia

Solution. Let's prove by induction that \displaystyle x_{n+1}\geq 2x_n. It holds for \displaystyle n=1. Assume it holds for \displaystyle n. Then by the induction hypothesis we have that \displaystyle x_n\geq 2x_{n-1}\geq\ldots\geq 2^{n-1}x_1>0 and

\displaystyle x_{n+2} = 2x_{n+1} + (x_{n+1}-2x_n) + \frac{2^n}{x_n} > 2x_{n+1}.

Similarly we prove that \displaystyle x_{n+1}\leq 2x_n+n. Again it holds for \displaystyle n=1. Assume that the inequality holds for \displaystyle n. Then using that \displaystyle x_n\geq 2^n and the induction hypothesis we obtain

\displaystyle x_{n+2}\leq 3x_{n+1}-2x_n+1\leq2x_{n+1}+(2x_n+n)-2x_n+1= 2x_{n+1}+n+1 .

Using the previous inequalities we obtain that the sequence \displaystyle y_n=\dfrac{x_n}{2^ n} is increasing and \displaystyle y_{n+1}\leq y_{n}+\frac{n}{2^n}\leq\ldots\leq y_1+\sum_{k=1}^n\frac{k}{2^k}<\infty, thus \displaystyle \lim\limits_{n \to \infty}y_n=\dfrac{x_n}{2^ n}=c exists.

The recurrence relation has the following form for \displaystyle y_n:

\displaystyle 4y_{n+2}-2y_{n+1}=4y_{n+1}-2y_n+\frac1{2^ n\cdot y_n}.

By summing up the above equality for \displaystyle n=1,\ldots,m we obtain

\displaystyle 4y_{m+2}-2y_{m+1}=4y_{2}-2y_1+\sum_{n=1}^m\frac1{2^ n\cdot y_n}=2+\sum_{n=1}^m\frac1{2^ n\cdot y_n}. \displaystyle (1)

Now using the facts that \displaystyle y_1=1, \displaystyle y_n increases and \displaystyle \lim_{n\to\infty}y_n=c we obtain \displaystyle 1\leq y_n\leq c. Hence

\displaystyle \frac1c\leq \sum_{n=1}^\infty\frac1{2^ n\cdot y_n}\leq 1.

Thus we get from (1)

\displaystyle 2c=\lim_{m\to\infty}(4y_{m+2}-2y_{m+1})=2+\sum_{n=1}^\infty\frac1{2^ n\cdot y_n}\in \left[2+\frac{1}{c},3\right].

So we have \displaystyle 2c^2\geq 2c+1 and \displaystyle 2c\leq 3. Recall that \displaystyle c\geq 1. Therefore \displaystyle 1+\sqrt3\leq 2c\leq 3, which finishes the proof.

IMC
2024

© IMC