| |||||||||||||
IMC2024: Day 2, Problem 8Problem 8. Define the sequence x1,x2,… by the initial terms x1=2, x2=4, and the recurrence relation xn+2=3xn+1−2xn+2nxnfor n≥1. Prove that lim exists and satisfies \displaystyle \frac{1+\sqrt{3}}{2}\leq\lim\limits_{n \to \infty}\dfrac{x_n}{2^ n}\leq\frac{3}{2}. Karen Keryan, Yerevan State University & American University of Armenia, Armenia Solution. Let's prove by induction that \displaystyle x_{n+1}\geq 2x_n. It holds for \displaystyle n=1. Assume it holds for \displaystyle n. Then by the induction hypothesis we have that \displaystyle x_n\geq 2x_{n-1}\geq\ldots\geq 2^{n-1}x_1>0 and \displaystyle x_{n+2} = 2x_{n+1} + (x_{n+1}-2x_n) + \frac{2^n}{x_n} > 2x_{n+1}. Similarly we prove that \displaystyle x_{n+1}\leq 2x_n+n. Again it holds for \displaystyle n=1. Assume that the inequality holds for \displaystyle n. Then using that \displaystyle x_n\geq 2^n and the induction hypothesis we obtain \displaystyle x_{n+2}\leq 3x_{n+1}-2x_n+1\leq2x_{n+1}+(2x_n+n)-2x_n+1= 2x_{n+1}+n+1 . Using the previous inequalities we obtain that the sequence \displaystyle y_n=\dfrac{x_n}{2^ n} is increasing and \displaystyle y_{n+1}\leq y_{n}+\frac{n}{2^n}\leq\ldots\leq y_1+\sum_{k=1}^n\frac{k}{2^k}<\infty, thus \displaystyle \lim\limits_{n \to \infty}y_n=\dfrac{x_n}{2^ n}=c exists. The recurrence relation has the following form for \displaystyle y_n: \displaystyle 4y_{n+2}-2y_{n+1}=4y_{n+1}-2y_n+\frac1{2^ n\cdot y_n}. By summing up the above equality for \displaystyle n=1,\ldots,m we obtain
Now using the facts that \displaystyle y_1=1, \displaystyle y_n increases and \displaystyle \lim_{n\to\infty}y_n=c we obtain \displaystyle 1\leq y_n\leq c. Hence \displaystyle \frac1c\leq \sum_{n=1}^\infty\frac1{2^ n\cdot y_n}\leq 1. Thus we get from (1) \displaystyle 2c=\lim_{m\to\infty}(4y_{m+2}-2y_{m+1})=2+\sum_{n=1}^\infty\frac1{2^ n\cdot y_n}\in \left[2+\frac{1}{c},3\right]. So we have \displaystyle 2c^2\geq 2c+1 and \displaystyle 2c\leq 3. Recall that \displaystyle c\geq 1. Therefore \displaystyle 1+\sqrt3\leq 2c\leq 3, which finishes the proof. | |||||||||||||
© IMC |